Most cited article - PubMed ID 26047460
Determination of certain micro and macroelements in plant stimulants and their infusions
In recent decades, an increasing number of ethnopharmacological studies have been dedicated to medicinal plants from South African fynbos. Among these plants, honeybush (Cyclopia spp.) has become a popular tea, mainly due to its healthy properties and caffeine-free status. The antioxidant, antimutagenic, and antimicrobial properties of this plant have been reported in several cell types, but its effects on reproductive function are still unknown. Here, we assessed the effects of honeybush (Cyclopia intermedia) on boar sperm parameters under induced oxidative stress (Fe2+/ascorbate) and during five days of semen storage at 17 °C without oxidative stress. In both experiments, four concentrations (200, 50, 12.5, and 3.125 µg/mL) of fermented honeybush were tested. Our results show that honeybush enhances sperm parameters, and no toxic effects were observed at any of the tested extract concentrations. Interestingly, honeybush (12.5 µg/mL) improved the sperm motility and kinetic parameters, preserved the plasma membrane integrity, and reduced the lipid peroxidation in the samples exposed to Fe2+/ascorbate (p < 0.05). In the stored samples, positive effects of honeybush on sperm parameters (motility, kinetics, acrosome, and mitochondria) were observed from 48 h until 120 h of semen storage (p < 0.05). Our results clearly show the protective effects of honeybush on sperm samples, thus promoting its use as a natural source of antioxidants for boar semen.
- Keywords
- Cyclopia intermedia, lipid peroxidation, oxidative stress, semen storage, sperm function,
- Publication type
- Journal Article MeSH
BACKGROUND AND AIMS: High Al resistance of Rumex obtusifolius together with its ability to accumulate Al has never been studied in weakly acidic conditions (pH > 5.8) and is not sufficiently described in real soil conditions. The potential elucidation of the role of organic acids in plant can explain the Al tolerance mechanism. METHODS: We established a pot experiment with R. obtusifolius planted in slightly acidic and alkaline soils. For the manipulation of Al availability, both soils were untreated and treated by lime and superphosphate. We determined mobile Al concentrations in soils and concentrations of Al and organic acids in organs. RESULTS: Al availability correlated positively to the extraction of organic acids (citric acid < oxalic acid) in soils. Monovalent Al cations were the most abundant mobile Al forms with positive charge in soils. Liming and superphosphate application were ambiguous measures for changing Al mobility in soils. Elevated transport of total Al from belowground organs into leaves was recorded in both lime-treated soils and in superphosphate-treated alkaline soil as a result of sufficient amount of Ca available from soil solution as well as from superphosphate that can probably modify distribution of total Al in R. obtusifolius as a representative of "oxalate plants." The highest concentrations of Al and organic acids were recorded in the leaves, followed by the stem and belowground organ infusions. CONCLUSIONS: In alkaline soil, R. obtusifolius is an Al-hyperaccumulator with the highest concentrations of oxalate in leaves, of malate in stems, and of citrate in belowground organs. These organic acids form strong complexes with Al that can play a key role in internal Al tolerance but the used methods did not allow us to distinguish the proportion of total Al-organic complexes to the free organic acids.
- MeSH
- Principal Component Analysis MeSH
- Biological Transport MeSH
- Aluminum pharmacokinetics MeSH
- Hydrogen-Ion Concentration MeSH
- Citric Acid metabolism MeSH
- Acetic Acid metabolism MeSH
- Oxalic Acid metabolism MeSH
- Soil Pollutants pharmacokinetics MeSH
- Molecular Weight MeSH
- Soil chemistry MeSH
- Rumex drug effects metabolism MeSH
- Tissue Distribution MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Aluminum MeSH
- Citric Acid MeSH
- Acetic Acid MeSH
- Oxalic Acid MeSH
- Soil Pollutants MeSH
- Soil MeSH
The determination of boron by inductively coupled plasma-atomic emission spectrometry has been carried in water-soluble and acid soluble (total content) fractions of 36 samples of traditional black tea and fruit brew. The estimation of the impact of the type of tea on the concentration of boron in water-soluble and acid extracts and potential human health risk from the daily intake of boron was carried out in this study. The levels of boron differed significantly in black and fruit tea types. The mean total content of boron ranged from 8.31 to 18.40 mg/kg in black teas, from 12.85 to 15.13 mg/kg in black tea with fruit flavor, and from 12.09 to 22.77 mg/kg in fruit brews. The degree of extraction of boron in black tea ranged from 8% to 27% and for fruit tea from 17% to 69%. In addition, the values below 25% were of black teas with fruit flavors. The daily intake of B from tea infusions (three cups/day) is still within the average daily intake except for some of the fruit brews which exceed acceptable regulations of the daily intake of total boron by humans. Hence, it may not produce any health risks for human consumption, if other sources of metal contaminated food are not taken at the same time.
- MeSH
- Boron analysis MeSH
- Tea chemistry MeSH
- Flavoring Agents chemistry MeSH
- Humans MeSH
- Beverages analysis MeSH
- Fruit chemistry MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Comparative Study MeSH
- Geographicals
- Poland MeSH
- Names of Substances
- Boron MeSH
- Tea MeSH
- Flavoring Agents MeSH