Most cited article - PubMed ID 26441871
Adaptation strategies of endolithic chlorophototrophs to survive the hyperarid and extreme solar radiation environment of the Atacama Desert
The high-altitude pre-Andean region of the Atacama Desert is characterized by its stark volcanic rock formations and unique hydrothermal gypsum outcrops (gypcrete) that it hosts. This study delves into the biomolecular composition of the endolithic phototrophic microbes that thrive within these gypcretes. Using advanced Raman spectroscopy techniques, including Raman imaging (complemented by microscopic and 3D microscopic observations), herein we unveil new insights into the adaptive strategies of these gypsum-inhabiting algae. Our Raman imaging results provide a detailed chemical map of carotenoids associated with microbial colonization. This map reveals a significant gradient in pigment content, highlighting a critical survival mechanism for algae and cyanobacteria in this polyextreme environment. Intriguingly, we detected signals for carotenoids not only in the algae-colonized layer, but also deeper within the gypsum matrix - indicating pigment migration following cell disruption. In addition, we conducted an in-depth analysis of individual algal cells from the Trebouxiaceae family, noting their color variations from green to orange, plus describing the spectral differences in detail. This investigation identified in-vivo pigments (carotenoids, chlorophyll) and lipids at the cellular level, offering a comprehensive view of the molecular adaptations enabling life in one of the Earth's most extreme habitats.
- Keywords
- Astrobiology, Biomarkers, Extremophiles, Geomicrobiology, Photopigments, Raman imaging,
- MeSH
- Extreme Environments MeSH
- Adaptation, Physiological MeSH
- Carotenoids * metabolism MeSH
- Desert Climate * MeSH
- Spectrum Analysis, Raman * MeSH
- Cyanobacteria metabolism genetics MeSH
- Calcium Sulfate * MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Carotenoids * MeSH
- Calcium Sulfate * MeSH
Microorganisms inhabiting gypsum have been observed in environments that differ greatly in water availability. Gypsum colonized by microorganisms, including cyanobacteria, eukaryotic algae, and diverse heterotrophic communities, occurs in hot, arid or even hyperarid environments, in cold environments of the Antarctic and Arctic zones, and in saline and hypersaline lakes and ponds where gypsum precipitates. Fossilized microbial remnants preserved in gypsum were also reported. Gypsum protects the endolithic microbial communities against excessive insolation and ultraviolet radiation, while allowing photosynthetically active radiation to penetrate through the mineral substrate. We here review the worldwide occurrences of microbially colonized gypsum and the specific properties of gypsum related to its function as a substrate and habitat for microbial life on Earth and possibly beyond. Methods for detecting and characterizing endolithic communities and their biomarkers in gypsum are discussed, including microscopic, spectroscopic, chemical, and molecular biological techniques. The modes of adaptation of different microorganisms to life within gypsum crystals under different environmental conditions are described. Finally, we discuss gypsum deposits as possible targets for the search for microbial life or its remnants beyond Earth, especially on Mars, where sulfate-rich deposits occur, and propose strategies to detect them during space exploration missions.
- Keywords
- astrobiology, biomarkers, cyanobacteria, endolithic communities, gypsum,
- Publication type
- Journal Article MeSH
- Review MeSH
Today, the biodiversity of endolithic microbial colonisations are only partly understood. In this study, we used a combination of molecular community metabarcoding using the 16S rRNA gene, light microscopy, CT-scan analysis, and Raman spectroscopy to describe gypsum endolithic communities in 2 sites-southern Poland and northern Israel. The obtained results have shown that despite different geographical areas, climatic conditions, and also physical features of colonized gypsum outcrops, both of these sites have remarkably similar microbial and pigment compositions. Cyanobacteria dominate both of the gypsum habitats, followed by Chloroflexi and Pseudomonadota. Among cyanobacteria, Thermosynechococcaceae were more abundant in Israel while Chroococcidiopsidaceae in Poland. Interestingly, no Gloeobacteraceae sequences have been found in Poland, only in Israel. Some of the obtained 16S rRNA gene sequences of cyanobacteria matched previously detected sequences from endolithic communities in various substrates and geographical regions, supporting the hypothesis of global metacommunity, but more data are still needed. Using Raman spectroscopy, cyanobacterial UV-screening pigments-scytonemin and gloeocapsin have been detected alongside carotenoids, chlorophyll a and melanin. These pigments can serve as potential biomarkers for basic taxonomic identification of cyanobacteria. Overall, this study provides more insight into the diversity of cyanobacterial endolithic colonisations in gypsum across different areas.
- Keywords
- 16S rRNA, Cyanobacteria, Endoliths, Gypsum, Metacommunity, Phototrophs,
- MeSH
- Microbiota MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Cyanobacteria * genetics metabolism classification MeSH
- Calcium Sulfate * chemistry MeSH
- Publication type
- Journal Article MeSH
- Comparative Study MeSH
- Geographicals
- Israel MeSH
- Poland MeSH
- Names of Substances
- RNA, Ribosomal, 16S MeSH
- Calcium Sulfate * MeSH
In this study, we used microscopic, spectroscopic, and molecular analysis to characterize endolithic colonization in gypsum (selenites and white crystalline gypsum) from several sites in Sicily. Our results showed that the dominant microorganisms in these environments are cyanobacteria, including: Chroococcidiopsis sp., Gloeocapsopsis pleurocapsoides, Gloeocapsa compacta, and Nostoc sp., as well as orange pigmented green microalgae from the Stephanospherinia clade. Single cell and filament sequencing coupled with 16S rRNA amplicon metagenomic profiling provided new insights into the phylogenetic and taxonomic diversity of the endolithic cyanobacteria. These organisms form differently pigmented zones within the gypsum. Our metagenomic profiling also showed differences in the taxonomic composition of endoliths in different gypsum varieties. Raman spectroscopy revealed that carotenoids were the most common pigments present in the samples. Other pigments such as gloeocapsin and scytonemin were also detected in the near-surface areas, suggesting that they play a significant role in the biology of endoliths in this environment. These pigments can be used as biomarkers for basic taxonomic identification, especially in case of cyanobacteria. The findings of this study provide new insights into the diversity and distribution of phototrophic microorganisms and their pigments in gypsum in Southern Sicily. Furthemore, this study highlights the complex nature of endolithic ecosystems and the effects of gypsum varieties on these communities, providing additional information on the general bioreceptivity of these environments.
- Keywords
- cyanobacteria, endoliths, green algae, gypsum, metagenomics, phototrophs,
- Publication type
- Journal Article MeSH
- MeSH
- Ecosystem MeSH
- Laboratories MeSH
- Cyanobacteria * MeSH
- Calcium Sulfate * MeSH
- Water MeSH
- Publication type
- Letter MeSH
- Comment MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Calcium Sulfate * MeSH
- Water MeSH
The biochemical responses of rock-inhabiting cyanobacteria towards native environmental stresses were observed in vivo in one of the Earth's most challenging extreme climatic environments. The cryptoendolithic cyanobacterial colonization, dominated by Chroococcidiopsis sp., was studied in an ignimbrite at a high altitude volcanic area in the Atacama Desert, Chile. Change in the carotenoid composition (red-shift) within a transect through the cyanobacteria dominant microbial community (average thickness ~1 mm) was unambiguously revealed in their natural endolithic microhabitat. The amount of red shifted carotenoid, observed for the first time in a natural microbial ecosystem, is depth dependent, and increased with increasing proximity to the rock surface, as proven by resonance Raman imaging and point resonance Raman profiling. It is attributed to a light-dependent change in carotenoid conjugation, associated with the light-adaptation strategy of cyanobacteria. A hypothesis is proposed for the possible role of an orange carotenoid protein (OCP) mediated non-photochemical quenching (NPQ) mechanism that influences the observed spectral behavior. Simultaneously, information about the distribution of scytonemin and phycobiliproteins was obtained. Scytonemin was detected in the uppermost cyanobacteria aggregates. A reverse signal intensity gradient of phycobiliproteins was registered, increasing with deeper positions as a response of the cyanobacterial light harvesting complex to low-light conditions.
- MeSH
- Pigments, Biological MeSH
- Ecosystem MeSH
- Microscopy, Fluorescence MeSH
- Carotenoids chemistry metabolism MeSH
- Microscopy, Confocal MeSH
- Environmental Microbiology MeSH
- Desert Climate * MeSH
- Cyanobacteria * isolation & purification metabolism MeSH
- Spectrum Analysis MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Pigments, Biological MeSH
- Carotenoids MeSH