Most cited article - PubMed ID 26590589
Evaluation of 3-hydroxybutyrate as an enzyme-protective agent against heating and oxidative damage and its potential role in stress response of poly(3-hydroxybutyrate) accumulating cells
An ever-growing body of literature evidences the protective role of polyhydroxyalkanoates (PHAs) against a plethora of mostly physical stressors in prokaryotic cells. To date, most of the research done involved bacterial strains isolated from habitats not considered to be life-challenging or extremely impacted by abiotic environmental factors. Polar region microorganisms experience a multitude of damaging factors in combinations rarely seen in other of Earth's environments. Therefore, the main objective of this investigation was to examine the role of PHAs in the adaptation of psychrophilic, Arctic-derived bacteria to stress conditions. Arctic PHA producers: Acidovorax sp. A1169 and Collimonas sp. A2191, were chosen and their genes involved in PHB metabolism were deactivated making them unable to accumulate PHAs (ΔphaC) or to utilize them (Δi-phaZ) as a carbon source. Varying stressors were applied to the wild-type and the prepared mutant strains and their survival rates were assessed based on CFU count. Wild-type strains with a functional PHA metabolism were best suited to survive the freeze-thaw cycle - a common feature of polar region habitats. However, the majority of stresses were best survived by the ΔphaC mutants, suggesting that the biochemical imbalance caused by the lack of PHAs induced a permanent cell-wide stress response thus causing them to better withstand the stressor application. Δi-phaZ mutants were superior in surviving UV irradiation, hinting that PHA granule presence in bacterial cells is beneficial despite it being biologically inaccessible. Obtained data suggests that the ability to metabolize PHA although important for survival, probably is not the most crucial mechanism in the stress-resistance strategies arsenal of cold-loving bacteria. KEY POINTS: • PHA metabolism helps psychrophiles survive freezing • PHA-lacking psychrophile mutants cope better with oxidative and heat stresses • PHA granule presence enhances the UV resistance of psychrophiles.
- Keywords
- Arctic bacteria, Environmental stressors, Polyhydroxyalkanoates, Survival,
- MeSH
- Bacteria metabolism MeSH
- Polyhydroxyalkanoates * metabolism MeSH
- Carbon metabolism MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Polyhydroxyalkanoates * MeSH
- Carbon MeSH
Microorganisms must face various inconvenient conditions; therefore, they developed several approaches for protection. Such a strategy also involves the accumulation of compatible solutes, also called osmolytes. It has been proved that the monomer unit 3-hydroxybutyrate (3HB), which is present in sufficient concentration in poly(3-hydroxybutyrate) (PHB)-accumulating cells, serves as a chemical chaperone protecting enzymes against heat and oxidative stress and as a cryoprotectant for enzymes, bacterial cells, and yeast. The stress robustness of the cells is also strongly dependent on the behavior and state of intracellular water, especially during stress exposure. For a better understanding of the protective mechanism and effect of strongly hydrophilic 3HB in solutions at a wide range of temperatures, a binary phase diagram of system sodium 3HB (Na3HB)-water in equilibrium and the state diagrams showing the glass transitions in the system were constructed. To investigate the activity of water in various compositions of the Na3HB/water system, three experimental techniques have been used (dynamic water sorption analysis, water activity measurements, and sorption calorimetry). First, Na3HB proved its hydrophilic nature, which is very comparable with known compatible solutes (trehalose). Results of differential scanning calorimetry demonstrated that Na3HB is also highly effective in depressing the freezing point and generating a large amount of nonfrozen water (1.35 g of water per gram of Na3HB). Therefore, Na3HB represents a very effective cryoprotectant that can be widely used for numerous applications.
- MeSH
- Hydroxybutyrates * chemistry pharmacology MeSH
- 3-Hydroxybutyric Acid MeSH
- Polyesters * chemistry MeSH
- Saccharomyces cerevisiae MeSH
- Temperature MeSH
- Hot Temperature MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Hydroxybutyrates * MeSH
- 3-Hydroxybutyric Acid MeSH
- Polyesters * MeSH
Actinobacteria belonging to the genus Rubrobacter are known for their multi-extremophilic growth conditions-they are highly radiation-resistant, halotolerant, thermotolerant or even thermophilic. This work demonstrates that the members of the genus are capable of accumulating polyhydroxyalkanoates (PHA) since PHA-related genes are widely distributed among Rubrobacter spp. whose complete genome sequences are available in public databases. Interestingly, all Rubrobacter strains possess both class I and class III synthases (PhaC). We have experimentally investigated the PHA accumulation in two thermophilic species, R. xylanophilus and R. spartanus. The PHA content in both strains reached up to 50% of the cell dry mass, both bacteria were able to accumulate PHA consisting of 3-hydroxybutyrate and 3-hydroxyvalerate monomeric units, none other monomers were incorporated into the polymer chain. The capability of PHA accumulation likely contributes to the multi-extremophilic characteristics since it is known that PHA substantially enhances the stress robustness of bacteria. Hence, PHA can be considered as extremolytes enabling adaptation to extreme conditions. Furthermore, due to the high PHA content in biomass, a wide range of utilizable substrates, Gram-stain positivity, and thermophilic features, the Rubrobacter species, in particular Rubrobacter xylanophilus, could be also interesting candidates for industrial production of PHA within the concept of Next-Generation Industrial Biotechnology.
- Keywords
- Rubrobacter spartanus, Rubrobacter xylanophilus, extremophiles, polyhydroxyalkanoates, stress conditions,
- Publication type
- Journal Article MeSH
Accumulation of polyhydroxybutyrate (PHB) seems to be a common metabolic strategy adopted by many bacteria to cope with cold environments. This work aimed at evaluating and understanding the cryoprotective effect of PHB. At first a monomer of PHB, 3-hydroxybutyrate, was identified as a potent cryoprotectant capable of protecting model enzyme (lipase), yeast (Saccharomyces cerevisiae) and bacterial cells (Cupriavidus necator) against the adverse effects of freezing-thawing cycles. Further, the viability of the frozen-thawed PHB accumulating strain of C. necator was compared to that of the PHB non-accumulating mutant. The presence of PHB granules in cells was revealed to be a significant advantage during freezing. This might be attributed to the higher intracellular level of 3-hydroxybutyrate in PHB accumulating cells (due to the action of parallel PHB synthesis and degradation, the so-called PHB cycle), but the cryoprotective effect of PHB granules seems to be more complex. Since intracellular PHB granules retain highly flexible properties even at extremely low temperatures (observed by cryo-SEM), it can be expected that PHB granules protect cells against injury from extracellular ice. Finally, thermal analysis indicates that PHB-containing cells exhibit a higher rate of transmembrane water transport, which protects cells against the formation of intracellular ice which usually has fatal consequences.
- MeSH
- Cupriavidus necator genetics metabolism MeSH
- Hydroxybutyrates metabolism MeSH
- Cryoprotective Agents metabolism MeSH
- Organelles metabolism MeSH
- Polyesters metabolism MeSH
- Saccharomyces cerevisiae enzymology MeSH
- Freezing MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Hydroxybutyrates MeSH
- Cryoprotective Agents MeSH
- poly-beta-hydroxybutyrate MeSH Browser
- Polyesters MeSH