Most cited article - PubMed ID 26905074
Cryptosporidium avium n. sp. (Apicomplexa: Cryptosporidiidae) in birds
BACKGROUND: Cryptosporidium spp. are globally distributed parasites that infect epithelial cells in the microvillus border of the gastrointestinal tract of all classes of vertebrates. Cryptosporidium chipmunk genotype I is a common parasite in North American tree squirrels. It was introduced into Europe with eastern gray squirrels and poses an infection risk to native European squirrel species, for which infection is fatal. In this study, the biology and genetic variability of different isolates of chipmunk genotype I were investigated. METHODS: The genetic diversity of Cryptosporidium chipmunk genotype I was analyzed by PCR/sequencing of the SSU rRNA, actin, HSP70, COWP, TRAP-C1 and gp60 genes. The biology of chipmunk genotype I, including oocyst size, localization of the life cycle stages and pathology, was examined by light and electron microscopy and histology. Infectivity to Eurasian red squirrels and eastern gray squirrels was verified experimentally. RESULTS: Phylogenic analyses at studied genes revealed that chipmunk genotype I is genetically distinct from other Cryptosporidium spp. No detectable infection occurred in chickens and guinea pigs experimentally inoculated with chipmunk genotype I, while in laboratory mice, ferrets, gerbils, Eurasian red squirrels and eastern gray squirrels, oocyst shedding began between 4 and 11 days post infection. While infection in mice, gerbils, ferrets and eastern gray squirrels was asymptomatic or had mild clinical signs, Eurasian red squirrels developed severe cryptosporidiosis that resulted in host death. The rapid onset of clinical signs characterized by severe diarrhea, apathy, loss of appetite and subsequent death of the individual may explain the sporadic occurrence of this Cryptosporidium in field studies and its concurrent spread in the population of native European squirrels. Oocysts obtained from a naturally infected human, the original inoculum, were 5.64 × 5.37 μm and did not differ in size from oocysts obtained from experimentally infected hosts. Cryptosporidium chipmunk genotype I infection was localized exclusively in the cecum and anterior part of the colon. CONCLUSIONS: Based on these differences in genetics, host specificity and pathogenicity, we propose the name Cryptosporidium mortiferum n. sp. for this parasite previously known as Cryptosporidium chipmunk genotype I.
- Keywords
- Biology, Course of infection, Cryptosporidiosis, Genetic diversity, Mortality, Oocyst size, Phylogeny,
- MeSH
- Cryptosporidiidae * MeSH
- Cryptosporidium * MeSH
- Feces parasitology MeSH
- Ferrets MeSH
- Phylogeny MeSH
- Genotype MeSH
- Gerbillinae MeSH
- Cryptosporidiosis * parasitology MeSH
- Chickens MeSH
- Humans MeSH
- Guinea Pigs MeSH
- Mice MeSH
- Oocysts MeSH
- Sciuridae parasitology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Guinea Pigs MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Cryptosporidium spp., common parasites of vertebrates, remain poorly studied in wildlife. This study describes the novel Cryptosporidium species adapted to nutrias (Myocastor coypus). A total of 150 faecal samples of feral nutria were collected from locations in the Czech Republic and Slovakia and examined for Cryptosporidium spp. oocysts and specific DNA at the SSU, actin, HSP70, and gp60 loci. Molecular analyses revealed the presence of C. parvum (n = 1), C. ubiquitum subtype family XIId (n = 5) and Cryptosporidium myocastoris n. sp. XXIIa (n = 2), and XXIIb (n = 3). Only nutrias positive for C. myocastoris shed microscopically detectable oocysts, which measured 4.8-5.2 × 4.7-5.0 µm, and oocysts were infectious for experimentally infected nutrias with a prepatent period of 5-6 days, although not for mice, gerbils, or chickens. The infection was localised in jejunum and ileum without observable macroscopic changes. The microvilli adjacent to attached stages responded by elongating. Clinical signs were not observed in naturally or experimentally infected nutrias. Phylogenetic analyses at SSU, actin, and HSP70 loci demonstrated that C. myocastoris n. sp. is distinct from other valid Cryptosporidium species.
- Keywords
- adaptation, biology, course of infection, infectivity, oocyst size, parasite, phylogeny, prevalence,
- Publication type
- Journal Article MeSH
BACKGROUND: Avian cryptosporidiosis is a common parasitic disease that is caused by five species, which are well characterised at the molecular and biological level, and more than 18 genotypes for which we have limited information. In this study, we determined the occurrence and molecular characteristics of Cryptosporidium spp. in farmed ostriches in the Czech Republic. METHODS: The occurrence and genetic identity of Cryptosporidium spp. were analysed by microscopy and PCR/sequencing of the small subunit rRNA, actin, HSP70 and gp60 genes. Cryptosporidium avian genotype II was examined from naturally and experimentally infected hosts and measured using differential interference contrast. The localisation of the life-cycle stages was studied by electron microscopy and histologically. Infectivity of Cryptosporidium avian genotype II for cockatiels (Nymphicus hollandicus (Kerr)), chickens (Gallus gallus f. domestica (L.)), geese (Anser anser f. domestica (L.)), SCID and BALB/c mice (Mus musculus L.) was verified. RESULTS: A total of 204 individual faecal samples were examined for Cryptosporidium spp. using differential staining and PCR/sequencing. Phylogenetic analysis of small subunit rRNA, actin, HSP70 and gp60 gene sequences showed the presence of Cryptosporidium avian genotype II (n = 7) and C. ubiquitum Fayer, Santín & Macarisin, 2010 IXa (n = 5). Only ostriches infected with Cryptosporidium avian genotype II shed oocysts that were detectable by microscopy. Oocysts were purified from a pooled sample of four birds, characterised morphometrically and used in experimental infections to determine biological characteristics. Oocysts of Cryptosporidium avian genotype II measure on average 6.13 × 5.15 μm, and are indistinguishable by size from C. baileyi Current, Upton & Haynes, 1986 and C. avium Holubová, Sak, Horčičková, Hlásková, Květoňová, Menchaca, McEvoy & Kváč, 2016. Cryptosporidium avian genotype II was experimentally infectious for geese, chickens and cockatiels, with a prepatent period of four, seven and eight days post-infection, respectively. The infection intensity ranged from 1000 to 16,000 oocysts per gram. None of the naturally or experimentally infected birds developed clinical signs in the present study. CONCLUSIONS: The molecular and biological characteristics of Cryptosporidium avian genotype II, described here, support the establishment of a new species, Cryptosporidium ornithophilus n. sp.
- Keywords
- C. ubiquitum, Cryptosporidium avian genotype II, Cryptosporidium ornithophilus n. sp., Experimental infections, Occurrence, Oocyst size, PCR,
- MeSH
- Cryptosporidium classification genetics ultrastructure MeSH
- Phylogeny MeSH
- Animals, Domestic parasitology MeSH
- Host Specificity MeSH
- Classification MeSH
- Cryptosporidiosis parasitology MeSH
- Bird Diseases parasitology MeSH
- Genes, Protozoan genetics MeSH
- Birds parasitology MeSH
- Life Cycle Stages MeSH
- Struthioniformes parasitology MeSH
- DNA Barcoding, Taxonomic veterinary MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
The genetic diversity of Cryptosporidium spp. in Apodemus spp. (striped field mouse, yellow-necked mouse and wood mouse) from 16 European countries was examined by PCR/sequencing of isolates from 437 animals. Overall, 13.7% (60/437) of animals were positive for Cryptosporidium by PCR. Phylogenetic analysis of small-subunit rRNA, Cryptosporidium oocyst wall protein and actin gene sequences showed the presence of Cryptosporidium ditrichi (22/60), Cryptosporidium apodemi (13/60), Cryptosporidium apodemus genotype I (8/60), Cryptosporidium apodemus genotype II (9/60), Cryptosporidium parvum (2/60), Cryptosporidium microti (2/60), Cryptosporidium muris (2/60) and Cryptosporidium tyzzeri (2/60). At the gp60 locus, novel gp60 families XVIIa and XVIIIa were identified in Cryptosporidium apodemus genotype I and II, respectively, subtype IIaA16G1R1b was identified in C. parvum, and subtypes IXaA8 and IXcA6 in C. tyzzeri. Only animals infected with C. ditrichi, C. apodemi, and Cryptosporidium apodemus genotypes shed oocysts that were detectable by microscopy, with the infection intensity ranging from 2000 to 52,000 oocysts per gram of faeces. None of the faecal samples was diarrheic in the time of the sampling.
- Keywords
- Epidemiology, Molecular analyses, Phylogeny, Rodentia,
- MeSH
- Cryptosporidium genetics MeSH
- Genetic Variation * MeSH
- Genotype MeSH
- Cryptosporidiosis parasitology MeSH
- Murinae microbiology MeSH
- Mice MeSH
- RNA, Ribosomal, 18S genetics MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Europe MeSH
- Names of Substances
- RNA, Ribosomal, 18S MeSH
We undertook a study on Cryptosporidium spp. in wild cricetid rodents. Fecal samples were collected from meadow voles (Microtus pennsylvanicus), southern red-backed voles (Myodes gapperi), woodland voles (Microtus pinetorum), muskrats (Ondatra zibethicus) and Peromyscus spp. mice in North America, and from bank voles (Myodes glareolus) and common voles (Microtus arvalis) in Europe. Isolates were characterized by sequence and phylogenetic analyses of the small subunit ribosomal RNA (SSU) and actin genes. Overall, 33·2% (362/1089) of cricetids tested positive for Cryptosporidium, with a greater prevalence in cricetids from North America (50·7%; 302/596) than Europe (12·1%; 60/493). Principal Coordinate analysis separated SSU sequences into three major groups (G1-G3), each represented by sequences from North American and European cricetids. A maximum likelihood tree of SSU sequences had low bootstrap support and showed G1 to be more heterogeneous than G2 or G3. Actin and concatenated actin-SSU trees, which were better resolved and had higher bootstrap support than the SSU phylogeny, showed that closely related cricetid hosts in Europe and North America are infected with closely related Cryptosporidium genotypes. Cricetids were not major reservoirs of human pathogenic Cryptosporidium spp.
- Keywords
- Cryptosporidium, Cricetidae, biogeography, phylogenetics,
- MeSH
- Arvicolinae parasitology MeSH
- Cryptosporidium classification isolation & purification pathogenicity physiology MeSH
- Animals, Wild parasitology MeSH
- Feces parasitology MeSH
- Phylogeny MeSH
- Phylogeography MeSH
- Genotype MeSH
- Rodentia parasitology MeSH
- Cryptosporidiosis epidemiology parasitology MeSH
- Mice parasitology MeSH
- RNA, Ribosomal genetics MeSH
- Sequence Analysis, DNA MeSH
- Disease Reservoirs parasitology MeSH
- Animals MeSH
- Check Tag
- Mice parasitology MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Europe epidemiology MeSH
- North America epidemiology MeSH
- Names of Substances
- RNA, Ribosomal MeSH
IntroductionThis paper reviews the current knowledge and understanding of Cryptosporidium spp. and Giardia spp. in humans, animals and the environment in 10 countries in the eastern part of Europe: Bosnia and Herzegovina, Croatia, Czech Republic, Estonia, Hungary, Latvia, Poland, Romania, Serbia and Slovenia. Methods: Published scientific papers and conference proceedings from the international and local literature, official national health service reports, national databases and doctoral theses in local languages were reviewed to provide an extensive overview on the epidemiology, diagnostics and research on these pathogens, as well as analyse knowledge gaps and areas for further research. Results:Cryptosporidium spp. and Giardia spp. were found to be common in eastern Europe, but the results from different countries are difficult to compare because of variations in reporting practices and detection methodologies used. Conclusion: Upgrading and making the diagnosis/detection procedures more uniform is recommended throughout the region. Public health authorities should actively work towards increasing reporting and standardising reporting practices as these prerequisites for the reported data to be valid and therefore necessary for appropriate control plans.
- Keywords
- One Health, cryptosporidiosis, giardiasis, zoonosis,
- MeSH
- Cryptosporidium genetics isolation & purification MeSH
- Feces parasitology MeSH
- Giardia genetics isolation & purification MeSH
- Giardiasis epidemiology parasitology MeSH
- Cryptosporidiosis epidemiology parasitology MeSH
- Real-Time Polymerase Chain Reaction MeSH
- Humans MeSH
- Foodborne Diseases epidemiology parasitology MeSH
- Prevalence MeSH
- Public Health * MeSH
- Environment MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Geographicals
- Europe, Eastern epidemiology MeSH