Nejvíce citovaný článek - PubMed ID 27094132
Progress in drug development for Alzheimer's disease: An overview in relation to mitochondrial energy metabolism
The neurotoxicity of phosphorylated tau protein (P-tau) and mitochondrial dysfunction play a significant role in the pathophysiology of Alzheimer's disease (AD). In vitro studies of the effects of P-tau oligomers on mitochondrial bioenergetics and reactive oxygen species production will allow us to evaluate the direct influence of P-tau on mitochondrial function. We measured the in vitro effect of P-tau oligomers on oxygen consumption and hydrogen peroxide production in isolated brain mitochondria. An appropriate combination of specific substrates and inhibitors of the phosphorylation pathway enabled the measurement and functional analysis of the effect of P-tau on mitochondrial respiration in defined coupling control states achieved in complex I-, II-, and I&II-linked electron transfer pathways. At submicromolar P-tau concentrations, we found no significant effect of P-tau on either mitochondrial respiration or hydrogen peroxide production in different respiratory states. The titration of P-tau showed a nonsignificant dose-dependent decrease in hydrogen peroxide production for complex I- and I&II-linked pathways. An insignificant in vitro effect of P-tau oligomers on both mitochondrial respiration and hydrogen peroxide production indicates that P-tau-induced mitochondrial dysfunction in AD is not due to direct effects of P-tau on the efficiency of the electron transport chain and on the production of reactive oxygen species.
- Klíčová slova
- Alzheimer’s disease, hydrogen peroxide, isolated mitochondria, mitochondrial dysfunction, phosphorylated tau, respiratory state,
- MeSH
- buněčné dýchání MeSH
- fosforylace MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- mitochondrie * metabolismus MeSH
- mozek metabolismus MeSH
- peroxid vodíku * metabolismus MeSH
- proteiny tau * metabolismus MeSH
- reaktivní formy kyslíku metabolismus MeSH
- spotřeba kyslíku MeSH
- transport elektronů MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- peroxid vodíku * MeSH
- proteiny tau * MeSH
- reaktivní formy kyslíku MeSH
Mitochondrial dysfunction is involved in the pathophysiology of psychiatric and neurodegenerative disorders and can be used as a modulator and/or predictor of treatment responsiveness. Understanding the mitochondrial effects of antidepressants is important to connect mitochondria with their therapeutic and/or adverse effects. Pig brain-isolated mitochondria were used to evaluate antidepressant-induced changes in the activity of electron transport chain (ETC) complexes, monoamine oxidase (MAO), mitochondrial respiratory rate, and ATP. Bupropion, escitalopram, fluvoxamine, sertraline, paroxetine, and trazodone were tested. All tested antidepressants showed significant inhibition of complex I and IV activities at high concentrations (50 and 100 µmol/L); complex II + III activity was reduced by all antidepressants except bupropion. Complex I-linked respiration was reduced by escitalopram >> trazodone >> sertraline. Complex II-linked respiration was reduced only by bupropion. Significant positive correlations were confirmed between complex I-linked respiration and the activities of individual ETC complexes. MAO activity was inhibited by all tested antidepressants, with SSRIs causing a greater effect than trazodone and bupropion. The results indicate a probable association between the adverse effects of high doses of antidepressants and drug-induced changes in the activity of ETC complexes and the respiratory rate of mitochondria. In contrast, MAO inhibition could be linked to the antidepressant, procognitive, and neuroprotective effects of the tested antidepressants.
- Klíčová slova
- ATP, antidepressants, mitochondrial respiration, monoamine oxidase, oxidative phosphorylation, reactive oxygen species,
- Publikační typ
- časopisecké články MeSH
Damage or loss of brain cells and impaired neurochemistry, neurogenesis, and synaptic and nonsynaptic plasticity of the brain lead to dementia in neurodegenerative diseases, such as Alzheimer's disease (AD). Injury to synapses and neurons and accumulation of extracellular amyloid plaques and intracellular neurofibrillary tangles are considered the main morphological and neuropathological features of AD. Age, genetic and epigenetic factors, environmental stressors, and lifestyle contribute to the risk of AD onset and progression. These risk factors are associated with structural and functional changes in the brain, leading to cognitive decline. Biomarkers of AD reflect or cause specific changes in brain function, especially changes in pathways associated with neurotransmission, neuroinflammation, bioenergetics, apoptosis, and oxidative and nitrosative stress. Even in the initial stages, AD is associated with Aβ neurotoxicity, mitochondrial dysfunction, and tau neurotoxicity. The integrative amyloid-tau-mitochondrial hypothesis assumes that the primary cause of AD is the neurotoxicity of Aβ oligomers and tau oligomers, mitochondrial dysfunction, and their mutual synergy. For the development of new efficient AD drugs, targeting the elimination of neurotoxicity, mutual potentiation of effects, and unwanted protein interactions of risk factors and biomarkers (mainly Aβ oligomers, tau oligomers, and mitochondrial dysfunction) in the early stage of the disease seems promising.
- Klíčová slova
- Alzheimer’s disease, amyloid beta, drug, mitochondria, tau protein,
- MeSH
- Alzheimerova nemoc * metabolismus MeSH
- amyloid metabolismus MeSH
- amyloidní beta-protein metabolismus MeSH
- amyloidogenní proteiny metabolismus MeSH
- lidé MeSH
- mitochondrie metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- amyloid MeSH
- amyloidní beta-protein MeSH
- amyloidogenní proteiny MeSH
This article describes acetylcholinesterase (AChE), an enzyme involved in parasympathetic neurotransmission, its activity, and how its inhibition can be pharmacologically useful for treating dementia, caused by Alzheimer's disease, or as a warfare method due to the action of nerve agents. The chemical concepts related to the irreversible inhibition of AChE, its reactivation, and aging are discussed, along with a relationship to the current international legislation on chemical weapons.
- Klíčová slova
- Alzheimer’s disease, Chemical Weapons Convention, acetylcholinesterase, nerve agents,
- MeSH
- acetylcholinesterasa * metabolismus MeSH
- Alzheimerova nemoc * farmakoterapie enzymologie MeSH
- chemická válka zákonodárství a právo MeSH
- cholinesterasové inhibitory terapeutické užití MeSH
- GPI-vázané proteiny antagonisté a inhibitory metabolismus MeSH
- lidé MeSH
- nervová bojová látka * MeSH
- stárnutí metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- acetylcholinesterasa * MeSH
- ACHE protein, human MeSH Prohlížeč
- cholinesterasové inhibitory MeSH
- GPI-vázané proteiny MeSH
- nervová bojová látka * MeSH
Impairment of mitochondrial metabolism, particularly the electron transport chain (ETC), as well as increased oxidative stress might play a significant role in pathogenesis of Alzheimer's disease (AD). Some effects of drugs used for symptomatic AD treatment may be related to their direct action on mitochondrial function. In vitro effects of pharmacologically different cognitives (galantamine, donepezil, rivastigmine, 7-MEOTA, memantine) and nootropic drugs (latrepirdine, piracetam) were investigated on selected mitochondrial parameters: activities of ETC complexes I, II + III, and IV, citrate synthase, monoamine oxidase (MAO), oxygen consumption rate, and hydrogen peroxide production of pig brain mitochondria. Complex I activity was decreased by galantamine, donepezil, and memantine; complex II + III activity was increased by galantamine. None of the tested drugs caused significant changes in the rate of mitochondrial oxygen consumption, even at high concentrations. Except galantamine, all tested drugs were selective MAO-A inhibitors. Latrepirdine, donepezil, and 7-MEOTA were found to be the most potent MAO-A inhibitors. Succinate-induced mitochondrial hydrogen peroxide production was not significantly affected by the drugs tested. The direct effect of cognitives and nootropics used in the treatment of AD on mitochondrial respiration is relatively small. The safest drugs in terms of disturbing mitochondrial function appear to be piracetam and rivastigmine. The MAO-A inhibition by cognitives and nootropics may also participate in mitochondrial neuroprotection. The results support the future research aimed at measuring the effects of currently used drugs or newly synthesized drugs on mitochondrial functioning in order to understand their mechanism of action.
- Klíčová slova
- Cognitives, Mitochondrial respiration, Monoamine oxidase, Nootropics, Reactive oxygen species,
- MeSH
- Alzheimerova nemoc metabolismus MeSH
- cholinesterasové inhibitory farmakologie MeSH
- donepezil MeSH
- galantamin metabolismus MeSH
- indany farmakologie MeSH
- kognice účinky léků MeSH
- memantin farmakologie MeSH
- mitochondrie účinky léků metabolismus MeSH
- monoaminoxidasa účinky léků metabolismus MeSH
- mozek účinky léků metabolismus MeSH
- nootropní látky farmakologie MeSH
- piperidiny farmakologie MeSH
- prasata MeSH
- rivastigmin farmakologie MeSH
- spotřeba kyslíku účinky léků MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cholinesterasové inhibitory MeSH
- donepezil MeSH
- galantamin MeSH
- indany MeSH
- memantin MeSH
- monoaminoxidasa MeSH
- nootropní látky MeSH
- piperidiny MeSH
- rivastigmin MeSH