Most cited article - PubMed ID 27293992
Molecular characterization of circulating tumor cells in ovarian cancer
In a cell-based non-invasive prenatal test (cbNIPT), intact circulating trophoblasts (CTs) are isolated from maternal blood for subsequent genetic analysis. Enrichment of these CTs from maternal blood is the most challenging step in the cbNIPT workflow. This study aims to assess the suitability of the filtration-based Metacell® technology to enrich CTs from maternal blood at week 10 to 13 of gestation. The Metacell® technology is a novel size-based enrichment technology that combines blood filtration through 8 μm pores with an in vitro culture method. Three protocols were evaluated. First, 8 mL or 16 mL of maternal blood was filtered and subsequently cultured in vitro on the separation membrane for 3 days in RPMI 1640. In addition, 16 mL of maternal blood was filtered, and immediately processed without further culturing. Y-chromosome-specific qPCR or STR analysis was performed to evaluate the enrichment of CTs. A total of 44 samples from pregnant women, out of which 26 were carrying a male fetus, were processed. Although five enriched male fetus samples show detectable male DNA quantities, it cannot be excluded that the obtained positive signal is caused by cell-free fetal DNA sticking to the Metacell® separation membrane. In conclusion, the Metacell® technology, tested as described, is not suitable for consistent enrichment of CTs.
Treatment of aggressive glioblastoma multiforme (GBM) must be based on very precise histological and molecular diagnostic of GBM type. According to the WHO guidelines, only tissue biopsy is a relevant source of cellular material evaluated in the diagnostic process to specify the tumor features. Nevertheless, obtaining a GBM biopsy is complicated and relies mostly on resection surgery. Evaluating circulating free DNA and/or circulating tumor cells (CTCs) in the clinic, using a liquid biopsy could represent a non-invasive cancer care optimization. In the present study, the peripheral blood of patients undergoing GBM resection (n = 18) was collected and examined for CTCs. The feasibility of GBM molecular diagnostics from a simple non-invasive peripheral blood withdrawal was evaluated. The size-based enriched CTCs were analyzed using cytomorphology and their origin confirmed based on mutational analysis. In addition, shared DNA mutations in CTCs and in primary tumor tissue were searched. For the identification of CTCs, next generation sequencing (NGS) was used. The GeneReader™ sequencing platform enables targeted sequencing of a 12-gene panel and direct evaluation of detected gene variations using QIAGEN Clinical Insight Analyze (QCI-A) software with a special algorithm for liquid biopsy sequencing analysis. Herein, we present a standard operating procedure for CTC enrichment in GBM patients, CTC in vitro culture, CTC cytomorphological evaluation, and NGS analysis of CTCs using the QIAGEN Actionable Insights Tumor (ATP) Panel. CTCs were present in all tested patients (18/18). The NGS data generated for formalin-fixed paraffin-embedded (FFPE) primary tumor tissues and CTCs reached significantly high-quality parameters. The comparisons between different sample types (CTCs vs. primary tumors) and sampling area (different primary tumor regions) showed a significant level of concordance, indicating CTC testing could be used for patient monitoring and recurrence awareness. Notably, more mutations were detected when analyzing CTC samples compared with the paired primary tumors (n = 3). The results confirm the feasibility of using CTCs as a source of tumor DNA in a diagnostic process, especially when evaluating the molecular characteristics of GBMs. A major advantage of the presented NGS approach for detecting CTCs is the simultaneous identification of several markers relevant for GBM diagnostics, allowing molecular diagnostics on cytological specimens and potential administration of innovative targeted therapies.
- Keywords
- CTCs, culturing, gene expression, glioblastoma, in vitro, liquid biopsy, metacell, sequencing,
- Publication type
- Journal Article MeSH
The presence of circulating tumor cells (CTCs) in patients with solid tumors is associated with poor prognosis. However, there are limited data concerning the detection of CTCs in renal cell cancer (RCC). The aim of this study is to evaluate the presence of CTCs in peripheral blood of patients with RCC undergoing surgery (n = 186). CTCs were tested before and after surgery as well as during the follow-up period afterwards. In total 495 CTC testing in duplicates were provided. To enrich CTCs, a size-based separation protocol and tube MetaCell® was used. CTCs presence was evaluated by single cell cytomorphology based on vital fluorescence microscopy. Additionally, to standardly applied fluorescence stains, CTCs viability was controlled by mitochondrial activity. CTCs were detected independently on the sampling order in up to 86.7% of the tested blood samples in patients undergoing RCC surgery. There is higher probability of CTC detection with growing tumor size, especially in clear cell renal cell cancer (ccRCC) cases. Similarly, the tumor size corresponds with metastasis presence and lymph node positivity and CTC detection. This paper describes for the first-time successful analysis of viable CTCs and their mitochondria as a part of the functional characterization of CTCs in RCC.
- Keywords
- CTCs, MetaCell, PDL-1, culturing, gene expression, immunotherapy, in vitro, renal cancer,
- Publication type
- Journal Article MeSH
INTRODUCTION: This study analyzes peripheral blood samples from breast cancer (BC) patients. CTCs from peripheral blood were enriched by size-based separation and were then cultivated in vitro. The primary aim of this study was to demonstrate the antigen independent CTC separation method with high CTC recovery. Subsequently, CTCs enriched several times during the treatment were characterized molecularly. METHODS: Patients with different stages of BC (N = 167) were included into the study. All patients were candidates for surgery, surgical diagnostics, or were undergoing chemotherapy. In parallel, 20 patients were monitored regularly and in addition to CTC presence, also CTC character was examined by qPCR, with special focus on HER2 and ESR status. RESULTS: CTC positivity in the cohort was 76%. There was no significant difference between the tested groups, but the highest CTC occurrence was identified in the group undergoing surgery and similarly in the group before the start of neoadjuvant treatment. On the other hand, the lowest CTC frequencies were observed in the menopausal patient group (56%), ESR+ patient group (60%), and DCIS group (44.4%). It is worth noting that after completion of neoadjuvant therapy (NACT) CTCs were present in 77.7% of cases. On the other hand, patients under hormonal treatment were CTC positive only in 52% of cases. DISCUSSIONS: Interestingly, HER2 and ESR status of CTCs differs from the status of primary tumor. In 50% of patients HER2 status on CTCs changed not only from HER2+ to HER2-, but also from HER2- to HER2+ (33%). ESR status in CTCs changed only in one direction from ESR+ to ESR-. CONCLUSIONS: Data obtained from the present study suggest that BC is a heterogeneous disease but CTCs may be detected independently of the disease characteristics in 76% of patients at any time point during the course of the disease. This relatively high CTC occurrence in BC should be considered when planning the long-term patient monitoring.
- Keywords
- Breast cancer, CTCs, Circulating tumor cells, Cultivation, Gene expression, In vitro, MetaCell,
- MeSH
- Estrogen Receptor alpha genetics MeSH
- Adult MeSH
- Genetic Heterogeneity * MeSH
- Middle Aged MeSH
- Humans MeSH
- Biomarkers, Tumor genetics MeSH
- Neoplastic Cells, Circulating pathology MeSH
- Breast Neoplasms blood genetics pathology MeSH
- Receptor, ErbB-2 genetics MeSH
- Gene Expression Regulation, Neoplastic MeSH
- Aged MeSH
- Neoplasm Staging MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Estrogen Receptor alpha MeSH
- ERBB2 protein, human MeSH Browser
- ESR1 protein, human MeSH Browser
- Biomarkers, Tumor MeSH
- Receptor, ErbB-2 MeSH
Circulating tumor cells (CTC) present in peripheral blood are assigned precursors of advanced tumor disease. Simplicity of blood withdrawal procedure adds practically an unlimited possibility of the CTC-monitoring and the advantages of the repeated biopsies over time. CTC got prognostic, predictive and diagnostic status with the technologic advance. Although the clinical utility of CTC has reached the high evidence, the significance of CTC testing was presented in the treatment strategy mostly with palliative intention. We report on the experiences with the CTC-testing in the CLIA-like laboratory working with the size-based CTC separation and in vitro culture. The data is presented in the form of case reports in patients with breast (BC), colorectal (CRC), prostate (PC) and lung cancer (NSCLC) to support the clinical utility of CTC during the neoadjuvant, adjuvant and palliative treatment. The presented findings support the evidence for liquid biopsy clinical implementation and enhance the ability of malignant disease monitoring and the treatment efficacy prediction.
- Keywords
- Circulating tumor cells, breast cancer, chemoresistance, colorectal cancer, non-small-cell lung cancer, prostate cancer,
- Publication type
- Journal Article MeSH