Most cited article - PubMed ID 27349808
Behavioral and neurophysiological evidence for increased cognitive flexibility in late childhood
The goal-directed control of behaviour critically depends on emotional regulation and constitutes the basis of mental well-being and social interactions. Within a socioemotional setting, it is necessary to prioritize effectively the relevant emotional information over interfering irrelevant emotional information to orchestrate cognitive resources and achieve appropriate behavior. Currently, it is elusive whether and how different socioemotional stimulus dimensions modulate cognitive control and conflict resolution. Theoretical considerations suggest that interference effects are less detrimental when conflicting emotional information is presented within a "positive socioemotional setting" compared with a "negative socioemotional setting." Using event-related potentials (ERPs) and source localization methods, we examined the basic system neurophysiological mechanisms and functional neuroanatomical structures associated with interactive effects of different interfering facial, socioemotional stimulus dimensions on conflict resolution. We account for interactive effects of different interfering socioemotional stimulus dimensions on conflict resolution, i.e., we show how the socioemotional valence modulates cognitive control (conflict processing). The data show that conflicts are stronger and more difficult to resolve in a negative emotional task-relevant setting than in a positive emotional task-relevant setting, where incongruent information barely induced conflicts. The degree of emotional conflict critically depends on the contextual emotional valence (positive or negative) in which this conflict occurs. The neurophysiological data show that these modulations were only reflected by late-stage conflict resolution processes associated with the middle (MFG) and superior frontal gyrus (SFG). Attentional selection processes and early-stage conflict monitoring do not seem to be modulated by interactive effects of different interfering socioemotional stimulus dimensions on conflict resolution.
- Keywords
- Conflict processing, EEG, Emotions, Faces, Source localization,
- MeSH
- Adult MeSH
- Emotions physiology MeSH
- Evoked Potentials physiology MeSH
- Humans MeSH
- Brain Mapping * MeSH
- Young Adult MeSH
- Attention physiology MeSH
- Negotiating psychology MeSH
- Facial Expression MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Inflammatory bowel disease (IBD) is highly prevalent. While the pathophysiological mechanisms of IBD are increasingly understood, there is a lack of knowledge concerning cognitive dysfunctions in IBD. This is all the more the case concerning the underlying neurophysiological mechanisms. In the current study we focus on possible dysfunctions of cognitive flexibility (task switching) processes in IBD patients using a system neurophysiological approach combining event-related potential (ERP) recordings with source localization analyses. We show that there are task switching deficits (i.e. increased switch costs) in IBD patients. The neurophysiological data show that even though the pathophysiology of IBD is diverse and wide-spread, only specific cognitive subprocesses are altered: There was a selective dysfunction at the response selection level (N2 ERP) associated with functional alterations in the anterior cingulate cortex and the right inferior frontal gyrus. Attentional selection processes (N1 ERP), perceptual categorization processes (P1 ERP), or mechanisms related to the flexible implementation of task sets and related working memory processes (P3 ERP) do not contribute to cognitive inflexibility in IBD patients and were unchanged. It seems that pathophysiological processes in IBD strongly compromise cognitive-neurophysiological subprocesses related to fronto-striatal networks. These circuits may become overstrained in IBD when cognitive flexibility is required.
- MeSH
- Analysis of Variance MeSH
- Adult MeSH
- Evoked Potentials MeSH
- Inflammatory Bowel Diseases metabolism physiopathology psychology MeSH
- Cognition * MeSH
- Humans MeSH
- Young Adult MeSH
- Neurophysiology * MeSH
- Attention MeSH
- Reaction Time MeSH
- Tumor Necrosis Factor-alpha metabolism MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Tumor Necrosis Factor-alpha MeSH
Cognitive flexibility is a major requirement for successful behavior. nNeural oscillations in the alpha frequency band were repeatedly associated with cognitive flexibility in task-switching paradigms. Alpha frequencies are modulated by working memory load and are used to process information during task switching, however we do not know how this oscillatory network communication is modulated. In order to understand the mechanisms that drive cognitive flexibility, ERPs, oscillatory power and how the communication within these networks is organized are of importance. The EEG data show that during phases reflecting preparatory processes to pre-activate task sets, alpha oscillatory power but not the small world properties of the alpha network architecture was modulated. During the switching only the N2 ERP component showed clear modulations. After the response, alpha oscillatory power reinstates and therefore seems to be important to deactivate or maintain the previous task set. For these reactive control processes the network architecture in terms of small-world properties is modulated. Effects of memory load on small-world aspects were seen in repetition trials, where small-world properties were higher when memory processes were relevant. These results suggest that the alpha oscillatory network becomes more small-world-like when reactive control processes during task switching are less complex.
- MeSH
- Adult MeSH
- Electroencephalography * MeSH
- Evoked Potentials MeSH
- Cognition physiology MeSH
- Middle Aged MeSH
- Humans MeSH
- Brain Mapping MeSH
- Adolescent MeSH
- Young Adult MeSH
- Memory physiology MeSH
- Reaction Time MeSH
- Healthy Volunteers MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Performing an act of self-regulation such as making decisions has been suggested to deplete a common limited resource, which impairs all subsequent self-regulatory actions (ego depletion theory). It has however remained unclear whether self-referred decisions truly impair behavioral control even in seemingly unrelated cognitive domains, and which neurophysiological mechanisms are affected by these potential depletion effects. In the current study, we therefore used an inter-individual design to compare two kinds of depletion, namely a self-referred choice-based depletion and a categorization-based switching depletion, to a non-depleted control group. We used a backward inhibition (BI) paradigm to assess the effects of depletion on task switching and associated inhibition processes. It was combined with EEG and source localization techniques to assess both behavioral and neurophysiological depletion effects. The results challenge the ego depletion theory in its current form: Opposing the theory's prediction of a general limited resource, which should have yielded comparable effects in both depletion groups, or maybe even a larger depletion in the self-referred choice group, there were stronger performance impairments following a task domain-specific depletion (i.e., the switching-based depletion) than following a depletion based on self-referred choices. This suggests at least partly separate and independent resources for various cognitive control processes rather than just one joint resource for all self-regulation activities. The implications are crucial to consider for people making frequent far-reaching decisions e.g., in law or economy.
- Keywords
- EEG, backward inhibition, ego depletion, neurophysiology, task switching,
- Publication type
- Journal Article MeSH