Most cited article - PubMed ID 27538407
Balkan endemic nephropathy: an update on its aetiology
Aristolochic acids (AAs) are a group of naturally occurring compounds present in many plant species of the Aristolochiaceae family. Exposure to AA is a significant risk factor for severe nephropathy, and urological and hepatobiliary cancers (among others) that are often recurrent and characterized by the prominent mutational fingerprint of AA. However, herbal medicinal products that contain AA continue to be manufactured and marketed worldwide with inadequate regulation, and possible environmental exposure routes receive little attention. As the trade of food and dietary supplements becomes increasingly globalized, we propose that further inaction on curtailing AA exposure will have far-reaching negative effects on the disease trends of AA-associated cancers. Our Review aims to systematically present the historical and current evidence for the mutagenicity and carcinogenicity of AA, and the effect of removing sources of AA exposure on cancer incidence trends. We discuss the persisting challenges of assessing the scale of AA-related carcinogenicity, and the obstacles that must be overcome in curbing AA exposure and preventing associated cancers. Overall, this Review aims to strengthen the case for the implementation of prevention measures against AA's multifaceted, detrimental and potentially fully preventable effects on human cancer development.
- MeSH
- Aristolochic Acids * toxicity MeSH
- Humans MeSH
- Mutagenesis MeSH
- Neoplasms * chemically induced epidemiology MeSH
- Public Health MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- aristolochic acid I MeSH Browser
- Aristolochic Acids * MeSH
The plant extract aristolochic acid (AA), containing aristolochic acids I (AAI) and II (AAII) as major components, causes aristolochic acid nephropathy (AAN) and Balkan endemic nephropathy (BEN), unique renal diseases associated with upper urothelial cancer. Recently (Chemical Research in Toxicology 33(11), 2804-2818, 2020), we showed that the in vivo metabolism of AAI and AAII in Wistar rats is influenced by their co-exposure (i.e., AAI/AAII mixture). Using the same rat model, we investigated how exposure to the AAI/AAII mixture can influence AAI and AAII DNA adduct formation (i.e., AA-mediated genotoxicity). Using 32P-postlabelling, we found that AA-DNA adduct formation was increased in the livers and kidneys of rats treated with AAI/AAII mixture compared to rats treated with AAI or AAII alone. Measuring the activity of enzymes involved in AA metabolism, we showed that enhanced AA-DNA adduct formation might be caused partially by both decreased AAI detoxification as a result of hepatic CYP2C11 inhibition during treatment with AAI/AAII mixture and by hepatic or renal NQO1 induction, the key enzyme predominantly activating AA to DNA adducts. Moreover, our results indicate that AAII might act as an inhibitor of AAI detoxification in vivo. Consequently, higher amounts of AAI might remain in liver and kidney tissues, which can be reductively activated, resulting in enhanced AAI DNA adduct formation. Collectively, these results indicate that AAII present in the plant extract AA enhances the genotoxic properties of AAI (i.e., AAI DNA adduct formation). As patients suffering from AAN and BEN are always exposed to the plant extract (i.e., AAI/AAII mixture), our findings are crucial to better understanding host factors critical for AAN- and BEN-associated urothelial malignancy.
- Keywords
- Balkan endemic nephropathy, DNA adducts, NAD(P)H:quinone oxidoreductase 1, aristolochic acid I, aristolochic acid II, aristolochic acid nephropathy, aristolochic acid-mediated carcinogenesis, cytochrome P450, genotoxicity,
- MeSH
- DNA Adducts metabolism MeSH
- DNA, Neoplasm metabolism MeSH
- Carcinogenesis * chemically induced metabolism MeSH
- Carcinogens toxicity MeSH
- Rats MeSH
- Aristolochic Acids toxicity MeSH
- Rats, Wistar MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- DNA Adducts MeSH
- aristolochic acid B MeSH Browser
- aristolochic acid I MeSH Browser
- DNA, Neoplasm MeSH
- Carcinogens MeSH
- Aristolochic Acids MeSH
The Czech Republic occupies the first place in the world in the frequency of renal and other urinary tract tumours, but their aetiology is unknown. To explore whether carcinogenic and nephrotoxic mycotoxins may contribute to kidney diseases in the Czech population, biomarkers of ochratoxin A (OTA) and citrinin (CIT) exposure were determined in biological specimens from a cohort of 50 patients with malignant renal tumours. Biomarker analyses in blood and urine samples used validated targeted methods for measuring OTA and CIT plus dihydrocitrinone (DH-CIT) after enrichment of analytes by specific immunoaffinity clean-up. OTA and CIT plus its metabolite DH-CIT were frequently detected in patient urine samples (OTA 62%; CIT 91%; DH-CIT 100%). The concentration ranges in urine were 1-27.8 ng/L for OTA, 2-87 ng/L for CIT and 2-160 ng/L for DH-CIT. The analyses of blood samples revealed also a frequent co-occurrence of OTA and CIT, in the ranges of 40-870 ng/L serum for OTA and 21-182 ng/L plasma for CIT. This first analysis of biomarkers in blood and urine samples of Czech patients revealed no major differences in comparison with published data for the general healthy Czech and European populations. Nonetheless, a frequent co-occurrence of CIT and OTA biomarkers in patient samples may be of interest with regard to potential interactions with other risk factors for renal disease.
- Keywords
- Biomarkers, Citrinin, Dihydrocitrinone, Ochratoxin A, Renal carcinogenicity,
- MeSH
- Biomarkers blood urine MeSH
- Chromatography, Liquid MeSH
- Citrinin blood urine MeSH
- Adult MeSH
- Cohort Studies MeSH
- Middle Aged MeSH
- Humans MeSH
- Mycotoxins blood urine MeSH
- Kidney Neoplasms chemistry urine MeSH
- Ochratoxins blood urine MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Tandem Mass Spectrometry MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Czechoslovakia MeSH
- Names of Substances
- Biomarkers MeSH
- Citrinin MeSH
- Mycotoxins MeSH
- ochratoxin A MeSH Browser
- Ochratoxins MeSH
Exposure to aristolochic acid (AA) is associated with human nephropathy and urothelial cancer. The tumour suppressor TP53 is a critical gene in carcinogenesis and frequently mutated in AA-induced urothelial tumours. We investigated the impact of p53 on AAI-induced nephrotoxicity and DNA damage in vivo by treating Trp53(+/+), Trp53(+/-) and Trp53(-/-) mice with 3.5 mg/kg body weight (bw) AAI daily for 2 or 6 days. Renal histopathology showed a gradient of intensity in proximal tubular injury from Trp53(+/+) to Trp53(-/-) mice, especially after 6 days. The observed renal injury was supported by nuclear magnetic resonance (NMR)-based metabonomic measurements, where a consistent Trp53 genotype-dependent trend was observed for urinary metabolites that indicate aminoaciduria (i.e. alanine), lactic aciduria (i.e. lactate) and glycosuria (i.e. glucose). However, Trp53 genotype had no impact on AAI-DNA adduct levels, as measured by 32P-postlabelling, in either target (kidney and bladder) or non-target (liver) tissues, indicating that the underlying mechanisms of p53-related AAI-induced nephrotoxicity cannot be explained by differences in AAI genotoxicity. Performing gas chromatography-mass spectrometry (GC-MS) on kidney tissues showed metabolic pathways affected by AAI treatment, but again Trp53 status did not clearly impact on such metabolic profiles. We also cultured primary mouse embryonic fibroblasts (MEFs) derived from Trp53(+/+), Trp53(+/-) and Trp53(-/-) mice and exposed them to AAI in vitro (50 µM for up to 48 h). We found that Trp53 genotype impacted on the expression of NAD(P)H:quinone oxidoreductase (Nqo1), a key enzyme involved in AAI bioactivation. Nqo1 induction was highest in Trp53(+/+) MEFs and lowest in Trp53(-/-) MEFs; and it correlated with AAI-DNA adduct formation, with lowest adduct levels being observed in AAI-exposed Trp53(-/-) MEFs. Overall, our results clearly demonstrate that p53 status impacts on AAI-induced renal injury, but the underlying mechanism(s) involved remain to be further explored. Despite the impact of p53 on AAI bioactivation and DNA damage in vitro, such effects were not observed in vivo.
- Keywords
- Aristolochic acid I, Carcinogen metabolism, DNA adducts, Mouse embryonic fibroblasts, Mouse models, Tumour suppressor p53,
- MeSH
- Cytochrome P-450 CYP1A1 genetics MeSH
- Gene Expression drug effects MeSH
- Fibroblasts drug effects metabolism pathology MeSH
- Cells, Cultured MeSH
- Aristolochic Acids metabolism toxicity MeSH
- Mutagens metabolism toxicity MeSH
- Mice, Inbred C57BL MeSH
- Mice, Knockout MeSH
- NAD(P)H Dehydrogenase (Quinone) genetics MeSH
- Tumor Suppressor Protein p53 genetics MeSH
- DNA Damage * MeSH
- Kidney Tubules, Proximal drug effects metabolism pathology MeSH
- Kidney Function Tests MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- aristolochic acid I MeSH Browser
- Cyp1a1 protein, mouse MeSH Browser
- Cytochrome P-450 CYP1A1 MeSH
- Aristolochic Acids MeSH
- Mutagens MeSH
- NAD(P)H Dehydrogenase (Quinone) MeSH
- Tumor Suppressor Protein p53 MeSH
- Nqo1 protein, mouse MeSH Browser
- Trp53 protein, mouse MeSH Browser
Aristolochic acid (AA) is a plant alkaloid that causes aristolochic acid nephropathy (AAN) and Balkan endemic nephropathy (BEN), unique renal diseases frequently associated with upper urothelial cancer (UUC). This review summarizes the significance of AA-derived DNA adducts in the aetiology of UUC leading to specific A:T to T:A transversion mutations (mutational signature) in AAN/BEN-associated tumours, which are otherwise rare in individuals with UCC not exposed to AA. Therefore, such DNA damage produced by AA-DNA adducts is one rare example of the direct association of exposure and cancer development (UUC) in humans, confirming that the covalent binding of carcinogens to DNA is causally related to tumourigenesis. Although aristolochic acid I (AAI), the major component of the natural plant extract AA, might directly cause interstitial nephropathy, enzymatic activation of AAI to reactive intermediates capable of binding to DNA is a necessary step leading to the formation of AA-DNA adducts and subsequently AA-induced malignant transformation. Therefore, AA-DNA adducts can not only be utilized as biomarkers for the assessment of AA exposure and markers of AA-induced UUC, but also be used for the mechanistic evaluation of its enzymatic activation and detoxification. Differences in AA metabolism might be one of the reasons for an individual's susceptibility in the multi-step process of AA carcinogenesis and studying associations between activities and/or polymorphisms of the enzymes metabolising AA is an important determinant to identify individuals having a high risk of developing AA-mediated UUC.
- Keywords
- DNA adduct formation, aristolochic acid, carcinogenicity, mutagenesis, nephrotoxicity,
- MeSH
- DNA Adducts metabolism MeSH
- Balkan Nephropathy etiology metabolism MeSH
- Biomarkers * MeSH
- Carcinogens chemistry metabolism MeSH
- Aristolochic Acids chemistry metabolism MeSH
- Humans MeSH
- Disease Susceptibility MeSH
- Cell Transformation, Neoplastic genetics metabolism MeSH
- Urologic Neoplasms etiology metabolism pathology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- DNA Adducts MeSH
- Biomarkers * MeSH
- Carcinogens MeSH
- Aristolochic Acids MeSH
ABSTRACT: The herbal drug aristolochic acid, a natural mixture of 8-methoxy-6-nitrophenanthro[3,4-d]-1,3-dioxole-5-carboxylic acid (AAI) and 6-nitrophenanthro[3,4-d]-1,3-dioxole-5-carboxylic acid (AAII), is derived from Aristolochia species and is the cause of two nephropathies. Ingestion of aristolochic acid is associated with the development of urothelial tumors linked with aristolochic acid nephropathy and is implicated in the development of Balkan endemic nephropathy-associated urothelial tumors. The O-demethylated metabolite of AAI, 8-hydroxyaristolochic acid (AAIa), is the detoxification product of AAI generated by its oxidative metabolism. Whereas the formation of AAIa from AAI by cytochrome P450 (CYP) enzymes has been found in vitro and in vivo, this metabolite has not been found from AAII as yet. Therefore, the present study has been designed to compare the amenability of AAI and AAII to oxidation; experimental and theoretical approaches were used for such a study. In the case of experimental approaches, the enzyme (CYP)-mediated formation of AAIa from both carcinogens was investigated using CYP enzymes present in subcellular microsomal fractions and recombinant CYP enzymes. We found that in contrast to AAI, AAII is oxidized only by several CYP enzymatic systems and their efficiency is much lower for oxidation of AAII than AAI. Using the theoretical approaches, such as flexible in silico docking methods and ab initio calculations, contribution to explanation of these differences was established. Indeed, the results found by both used approaches determined the reasons why AAI is better oxidized than AAII; the key factor causing the differences in AAI and AAII oxidation is their different amenability to chemical oxidation.
- Keywords
- Enzymes, High pressure liquid chromatography, Molecular modeling, Redox reactions,
- Publication type
- Journal Article MeSH