Most cited article - PubMed ID 27764831
Mixed-Up Sex Chromosomes: Identification of Sex Chromosomes in the X1X1X2X2/X1X2Y System of the Legless Lizards of the Genus Lialis (Squamata: Gekkota: Pygopodidae)
Geckos (Gekkota), the species-rich clade of reptiles with more than 2200 currently recognized species, demonstrate a remarkable variability in diploid chromosome numbers (2n = 16-48) and mode of sex determination. However, only a small fraction of gekkotan species have been studied with cytogenetic methods. Here, we applied both conventional (karyotype reconstruction and C-banding) and molecular (fluorescence in situ hybridization with probes for rDNA loci and telomeric repeats) cytogenetic analyses in seven species of geckos, namely Blaesodactylus boivini, Chondrodactylus laevigatus, Gekko badenii, Gekko cf. lionotum, Hemidactylus sahgali, Homopholis wahlbergii (Gekkonidae) and Ptyodactylus togoensis (Phyllodactylidae), in order to provide further insights into the evolution of karyotypes in geckos. Our analysis revealed the presence of interstitial telomeric repeats in four species, but we were not able to conclude if they are remnants of previous chromosome rearrangements or were formed by an accumulation of telomeric-like satellite motifs. Even though sex chromosomes were previously identified in several species from the genera Hemidactylus and Gekko by cytogenetic and/or genomic methods, they were not detected by us in any examined species. Our examined species either have poorly differentiated sex chromosomes or, possibly, environmental sex determination. Future studies should explore the effect of temperature and conduct genome-wide analyses in order to identify the mode of sex determination in these species.
- Keywords
- C-banding, FISH, Gekkota, heterochromatin, karyotype, rDNA, sex chromosomes, telomeres,
- MeSH
- Genome-Wide Association Study MeSH
- In Situ Hybridization, Fluorescence MeSH
- Lizards * genetics MeSH
- Karyotyping MeSH
- Sex Chromosomes genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Scincoidea, the reptilian clade that includes girdled lizards, night lizards, plated lizards and skinks, are considered as a lineage with diversity in sex-determining systems. Recently, the hypothesis on the variability in sex determination in skinks and even more the absence of sex chromosomes in some of them has been rivalling. Homologous, evolutionary stable XX/XY sex chromosomes were documented to be widespread across skinks. However, sex determination in the other scincoidean families is highly understudied. ZZ/ZW sex chromosomes have been identified only in night lizards and a single species of plated lizards. It seems that although there are different sex chromosome systems among scincoidean lineages, they share one common trait: they are mostly poorly differentiated and often undetectable by cytogenetic methods. Here, we report one of the exceptions, demonstrating for the first time ZZ/ZW sex chromosomes in the plated lizard Zonosaurus madagascariensis. Its sex chromosomes are morphologically similar, but the W is clearly detectable by comparative genomic hybridization (CGH), suggesting that the Z and W chromosomes highly differ in sequence content. Our findings confirm the presence of female heterogamety in plated lizards and provides novel insights to expand our understanding of sex chromosome evolution in scincoidean lizards.
- Keywords
- C-banding, CGH, FISH, ZZ/ZW, cytogenetics, karyotype, rDNA loci, sex chromosomes, sex determination, telomeres,
- MeSH
- Lizards * genetics MeSH
- Humans MeSH
- Sex Chromosomes genetics MeSH
- Sex Determination Processes * genetics MeSH
- Comparative Genomic Hybridization MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Madagascar MeSH
Differentiation of sex chromosomes is thought to have evolved with cessation of recombination and subsequent loss of genes from the degenerated partner (Y and W) of sex chromosomes, which in turn leads to imbalance of gene dosage between sexes. Based on work with traditional model species, theory suggests that unequal gene copy numbers lead to the evolution of mechanisms to counter this imbalance. Dosage compensation, or at least achieving dosage balance in expression of sex-linked genes between sexes, has largely been documented in lineages with male heterogamety (XX/XY sex determination), while ZZ/ZW systems are assumed to be usually associated with the lack of chromosome-wide gene dose regulatory mechanisms. Here, we document that although the pygopodid geckos evolved male heterogamety with a degenerated Y chromosome 32-72 Ma, one species in particular, Burton's legless lizard (Lialis burtonis), does not possess dosage balance in the expression of genes in its X-specific region. We summarize studies on gene dose regulatory mechanisms in animals and conclude that there is in them no significant dichotomy between male and female heterogamety. We speculate that gene dose regulatory mechanisms are likely to be related to the general mechanisms of sex determination instead of type of heterogamety. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)'.
- Keywords
- Gekkota, RNA-seq, dosage compensation, reptiles, sex chromosomes, sex determination,
- MeSH
- Lizards genetics MeSH
- Dosage Compensation, Genetic * MeSH
- Sex Chromosomes genetics MeSH
- Gene Expression Regulation * MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The lizards of the species-rich clade Scincoidea including cordylids, gerrhosaurids, skinks, and xantusiids, show an almost cosmopolitan geographical distribution and a remarkable ecological and morphological divergence. However, previous studies revealed limited variability in cytogenetic traits. The sex determination mode was revealed only in a handful of gerrhosaurid, skink, and xantusiid species, which demonstrated either ZZ/ZW or XX/XY sex chromosomes. In this study, we explored the karyotypes of six species of skinks, two species of cordylids, and one gerrhosaurid. We applied conventional and molecular cytogenetic methods, including C-banding, fluorescence in situ hybridization with probes specific for telomeric motifs and rDNA loci, and comparative genomic hybridization. The diploid chromosome numbers are rather conserved among these species, but the chromosome morphology, the presence of interstitial telomeric sequences, and the topology of rDNA loci vary significantly. Notably, XX/XY sex chromosomes were identified only in Tiliqua scincoides, where, in contrast to the X chromosome, the Y chromosome lacks accumulations of rDNA loci. We confirm that within the lizards of the scincoidean clade, sex chromosomes remained in a generally poor stage of differentiation.
- Keywords
- CGH, FISH, comparative genome hybridization, evolution, fluorescence in situ hybridization, heterochromatin, karyotype, rDNA, reptiles, sex chromosomes, sex determination, telomeres,
- MeSH
- Cytogenetic Analysis methods MeSH
- Diploidy MeSH
- In Situ Hybridization, Fluorescence MeSH
- Lizards classification genetics MeSH
- Karyotyping MeSH
- Evolution, Molecular MeSH
- Sex Chromosomes genetics MeSH
- Sex Determination Processes MeSH
- DNA, Ribosomal genetics MeSH
- Comparative Genomic Hybridization MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- DNA, Ribosomal MeSH
Amniotes possess astonishing variability in sex determination ranging from environmental sex determination (ESD) to genotypic sex determination (GSD) with highly differentiated sex chromosomes. Geckos are one of the few amniote groups with substantial variability in sex determination. What makes them special in this respect? We hypothesized that the extraordinary variability of sex determination in geckos can be explained by two alternatives: 1) unusual lability of sex determination, predicting that the current GSD systems were recently formed and are prone to turnovers; and 2) independent transitions from the ancestral ESD to later stable GSD, which assumes that geckos possessed ancestrally ESD, but once sex chromosomes emerged, they remain stable in the long term. Here, based on genomic data, we document that the differentiated ZZ/ZW sex chromosomes evolved within carphodactylid geckos independently from other gekkotan lineages and remained stable in the genera Nephrurus, Underwoodisaurus, and Saltuarius for at least 15 Myr and potentially up to 45 Myr. These results together with evidence for the stability of sex chromosomes in other gekkotan lineages support more our second hypothesis suggesting that geckos do not dramatically differ from the evolutionary transitions in sex determination observed in the majority of the amniote lineages.
- Keywords
- DNA-seq, genomics, qPCR, reptiles, sex chromosomes, sex determination,
- MeSH
- Biological Evolution MeSH
- Phylogeny MeSH
- Lizards * genetics MeSH
- Sex Chromosomes genetics MeSH
- Sex Determination Processes genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Differentiated sex chromosomes are believed to be evolutionarily stable, while poorly differentiated sex chromosomes are considered to be prone to turnovers. With around 1700 currently known species forming ca 15% of reptile species diversity, skinks (family Scincidae) are a very diverse group of squamates known for their large ecological and morphological variability. Skinks generally have poorly differentiated and cytogenetically indistinguishable sex chromosomes, and their sex determination was suggested to be highly variable. Here, we determined X-linked genes in the common sandfish (Scincus scincus) and demonstrate that skinks have shared the same homologous XX/XY sex chromosomes across their wide phylogenetic spectrum for at least 85 million years, approaching the age of the highly differentiated ZZ/ZW sex chromosomes of birds and advanced snakes. Skinks thus demonstrate that even poorly differentiated sex chromosomes can be evolutionarily stable. The conservation of sex chromosomes across skinks allows us to introduce the first molecular sexing method widely applicable in this group.
- Keywords
- genome, molecular sexing, qPCR, sex chromosomes, sex determination, vertebrates,
- MeSH
- Sex Determination Analysis MeSH
- Phylogeny MeSH
- Snakes MeSH
- Lizards * genetics MeSH
- Sex Chromosomes * genetics MeSH
- Sex Determination Processes MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Telomeres are nucleoprotein complexes protecting chromosome ends in most eukaryotic organisms. In addition to chromosome ends, telomeric-like motifs can be accumulated in centromeric, pericentromeric and intermediate (i.e., between centromeres and telomeres) positions as so-called interstitial telomeric repeats (ITRs). We mapped the distribution of (TTAGGG)n repeats in the karyotypes of 30 species from nine families of turtles using fluorescence in situ hybridization. All examined species showed the expected terminal topology of telomeric motifs at the edges of chromosomes. We detected ITRs in only five species from three families. Combining our and literature data, we inferred seven independent origins of ITRs among turtles. ITRs occurred in turtles in centromeric positions, often in several chromosomal pairs, in a given species. Their distribution does not correspond directly to interchromosomal rearrangements. Our findings support that centromeres and non-recombining parts of sex chromosomes are very dynamic genomic regions, even in turtles, a group generally thought to be slowly evolving. However, in contrast to squamate reptiles (lizards and snakes), where ITRs were found in more than half of the examined species, and birds, the presence of ITRs is generally rare in turtles, which agrees with the expected low rates of chromosomal rearrangements and rather slow karyotype evolution in this group.
- Keywords
- FISH, ITRs, ITSs, evolution, in situ hybridization, interstitial telomeric repeats, interstitial telomeric sequences, karyotype, telomeres, turtles,
- MeSH
- Centromere genetics MeSH
- Snakes genetics MeSH
- In Situ Hybridization, Fluorescence MeSH
- Lizards genetics MeSH
- Karyotype MeSH
- Sex Chromosomes genetics MeSH
- Repetitive Sequences, Nucleic Acid genetics MeSH
- Telomere genetics MeSH
- Turtles genetics MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Turtles demonstrate variability in sex determination and, hence, constitute an excellent model for the evolution of sex chromosomes. Notably, the sex determination of the freshwater turtles from the family Chelidae, a species-rich group with wide geographical distribution in the southern hemisphere, is still poorly explored. Here we documented the presence of an XX/XY sex determination system in seven species of the Australasian chelid genera Chelodina, Emydura, and Elseya by conventional (karyogram reconstruction, C-banding) and molecular cytogenetic methods (comparative genome hybridization, in situ hybridization with probes specific for GATA microsatellite motif, the rDNA loci, and the telomeric repeats). The sex chromosomes are microchromosomes in all examined species of the genus Chelodina. In contrast, the sex chromosomes are the 4th largest pair of macrochromosomes in the genera Emydura and Elseya. Their X chromosomes are submetacentric, while their Y chromosomes are metacentric. The chelid Y chromosomes contain a substantial male-specific genomic region with an accumulation of the GATA microsatellite motif, and occasionally, of the rDNA loci and telomeric repeats. Despite morphological differences between sex chromosomes, we conclude that male heterogamety was likely already present in the common ancestor of Chelodina, Emydura and Elseya in the Mesozoic period.
- MeSH
- X Chromosome genetics MeSH
- Y Chromosome genetics MeSH
- Genome * MeSH
- Karyotype MeSH
- Microsatellite Repeats MeSH
- Evolution, Molecular * MeSH
- Sex Chromosomes genetics MeSH
- Sex Determination Processes MeSH
- Turtles MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Amniotes possess variability in sex determination, from environmental sex determination (ESD), where no sex chromosomes are present, to genotypic sex determination (GSD) with highly differentiated sex chromosomes. Some evolutionary scenarios postulate high stability of differentiated sex chromosomes and rare transitions from GSD to ESD. However, sex chromosome turnovers and two independent transitions from highly differentiated ZZ/ZW sex chromosomes to ESD were previously reported in the lacertid lizards. Here, we examined the homology of sex chromosomes in the wide phylogenetic spectrum of lacertids and their outgroups by comparing gene copy numbers between sexes in genes previously found to be Z-specific in some lacertids. Our current sampling covers 45 species from 26 genera including lineages supposed to possess a derived sex determining systems. We found that all tested lacertids share homologous differentiated ZZ/ZW sex chromosomes, which were present already in their common ancestor living around 85 million years ago. These differentiated sex chromosomes are not present in amphisbaenians and teiid lizards, the close relatives of lacertids. Our study demonstrates how inaccuracies in data can influence the outcome of phylogenetic reconstructions of evolution of sex determination, in this case they overestimated the number of shifts from GSD to ESD and the rate in turnovers of sex chromosomes.
- MeSH
- Cytogenetics statistics & numerical data MeSH
- Phylogeny MeSH
- Genotype * MeSH
- Gene Dosage MeSH
- Lizards physiology MeSH
- Evolution, Molecular MeSH
- Sex Chromosomes genetics MeSH
- Sex Determination Processes physiology MeSH
- Sequence Homology, Nucleic Acid MeSH
- Data Accuracy MeSH
- Environmental Exposure * MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
For a long time, turtles of the family Geoemydidae have been considered exceptional because representatives of this family were thought to possess a wide variety of sex determination systems. In the present study, we cytogenetically studied Geoemyda spengleri and G. japonica and re-examined the putative presence of sex chromosomes in Pangshura smithii. Karyotypes were examined by assessing the occurrence of constitutive heterochromatin, by comparative genome hybridization and in situ hybridization with repetitive motifs, which are often accumulated on differentiated sex chromosomes in reptiles. We found similar karyotypes, similar distributions of constitutive heterochromatin and a similar topology of tested repetitive motifs for all three species. We did not detect differentiated sex chromosomes in any of the species. For P. smithii, a ZZ/ZW sex determination system, with differentiated sex chromosomes, was described more than 40 years ago, but this finding has never been re-examined and was cited in all reviews of sex determination in reptiles. Here, we show that the identification of sex chromosomes in the original report was based on the erroneous pairing of chromosomes in the karyogram, causing over decades an error cascade regarding the inferences derived from the putative existence of female heterogamety in geoemydid turtles.
- Keywords
- Comparative genome hybridization, Evolution, FISH, Karyotype, Microsatellite, Sex chromosomes, Sex determination, Telomeres, Turtles,
- Publication type
- Journal Article MeSH