Most cited article - PubMed ID 28008171
Induction of lipogenesis in white fat during cold exposure in mice: link to lean phenotype
Warm-blooded animals such as birds and mammals are able to protect stable body temperature due to various thermogenic mechanisms. These processes can be facultative (occurring only under specific conditions, such as acute cold) and adaptive (adjusting their capacity according to long-term needs). They can represent a substantial part of overall energy expenditure and, therefore, affect energy balance. Classical mechanisms of facultative thermogenesis include shivering of skeletal muscles and (in mammals) non-shivering thermogenesis (NST) in brown adipose tissue (BAT), which depends on uncoupling protein 1 (UCP1). Existence of several alternative thermogenic mechanisms has been suggested. However, their relative contribution to overall heat production and the extent to which they are adaptive and facultative still needs to be better defined. Here we focus on comparison of NST in BAT with thermogenesis in skeletal muscles, including shivering and NST. We present indications that muscle NST may be adaptive but not facultative, unlike UCP1-dependent NST. Due to its slow regulation and low energy efficiency, reflecting in part the anatomical location, induction of muscle NST may counteract development of obesity more effectively than UCP1-dependent thermogenesis in BAT.
- MeSH
- Shivering * physiology MeSH
- Energy Metabolism physiology MeSH
- Adaptation, Physiological * physiology MeSH
- Adipose Tissue, Brown * metabolism MeSH
- Muscle, Skeletal * metabolism MeSH
- Humans MeSH
- Obesity * metabolism physiopathology MeSH
- Thermogenesis * physiology MeSH
- Uncoupling Protein 1 metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Uncoupling Protein 1 MeSH
OBJECTIVE: Non-shivering thermogenesis (NST) mediated by uncoupling protein 1 (UCP1) in brown adipose tissue (BAT) can be activated via the adrenergic system in response to cold or diet, contributing to both thermal and energy homeostasis. Other mechanisms, including metabolism of skeletal muscle, may also be involved in NST. However, relative contribution of these energy dissipating pathways and their adaptability remain a matter of long-standing controversy. METHODS: We used warm-acclimated (30 °C) mice to characterize the effect of an up to 7-day cold acclimation (6 °C; CA) on thermoregulatory thermogenesis, comparing inbred mice with a genetic background conferring resistance (A/J) or susceptibility (C57BL/6 J) to obesity. RESULTS: Both warm-acclimated C57BL/6 J and A/J mice exhibited similar cold endurance, assessed as a capability to maintain core body temperature during acute exposure to cold, which improved in response to CA, resulting in comparable cold endurance and similar induction of UCP1 protein in BAT of mice of both genotypes. Despite this, adrenergic NST in BAT was induced only in C57BL/6 J, not in A/J mice subjected to CA. Cold tolerance phenotype of A/J mice subjected to CA was not based on increased shivering, improved insulation, or changes in physical activity. On the contrary, lipidomic, proteomic and gene expression analyses along with palmitoyl carnitine oxidation and cytochrome c oxidase activity revealed induction of lipid oxidation exclusively in skeletal muscle of A/J mice subjected to CA. These changes appear to be related to skeletal muscle NST, mediated by sarcolipin-induced uncoupling of sarco(endo)plasmic reticulum calcium ATPase pump activity and accentuated by changes in mitochondrial respiratory chain supercomplexes assembly. CONCLUSIONS: Our results suggest that NST in skeletal muscle could be adaptively augmented in the face of insufficient adrenergic NST in BAT, depending on the genetic background of the mice. It may provide both protection from cold and resistance to obesity, more effectively than BAT.
- Keywords
- Brown adipose tissue, Mitochondrial supercomplex, Non-shivering thermogenesis, Obesity, Sarcolipin, Skeletal muscle,
- MeSH
- Adrenergic Agents metabolism MeSH
- Adipose Tissue, Brown * metabolism MeSH
- Mice, Inbred Strains MeSH
- Muscle, Skeletal metabolism MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Obesity metabolism MeSH
- Proteomics * MeSH
- Thermogenesis physiology MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Adrenergic Agents MeSH
OBJECTIVE: Classical ATP-independent non-shivering thermogenesis enabled by uncoupling protein 1 (UCP1) in brown adipose tissue (BAT) is activated, but not essential for survival, in the cold. It has long been suspected that futile ATP-consuming substrate cycles also contribute to thermogenesis and can partially compensate for the genetic ablation of UCP1 in mouse models. Futile ATP-dependent thermogenesis could thereby enable survival in the cold even when brown fat is less abundant or missing. METHODS: In this study, we explore different potential sources of UCP1-independent thermogenesis and identify a futile ATP-consuming triglyceride/fatty acid cycle as the main contributor to cellular heat production in brown adipocytes lacking UCP1. We uncover the mechanism on a molecular level and pinpoint the key enzymes involved using pharmacological and genetic interference. RESULTS: ATGL is the most important lipase in terms of releasing fatty acids from lipid droplets, while DGAT1 accounts for the majority of fatty acid re-esterification in UCP1-ablated brown adipocytes. Furthermore, we demonstrate that chronic cold exposure causes a pronounced remodeling of adipose tissues and leads to the recruitment of lipid cycling capacity specifically in BAT of UCP1-knockout mice, possibly fueled by fatty acids from white fat. Quantification of triglyceride/fatty acid cycling clearly shows that UCP1-ablated animals significantly increase turnover rates at room temperature and below. CONCLUSION: Our results suggest an important role for futile lipid cycling in adaptive thermogenesis and total energy expenditure.
- Keywords
- Brown adipose tissue, Fatty acids, Futile substrate cycle, Lipolysis, Re-esterification, UCP1-independent thermogenesis,
- MeSH
- Adenosine Triphosphate metabolism MeSH
- Adipose Tissue, Brown * metabolism MeSH
- Fatty Acids metabolism MeSH
- Mice, Knockout MeSH
- Mice MeSH
- Thermogenesis * MeSH
- Triglycerides metabolism MeSH
- Uncoupling Protein 1 genetics metabolism MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Adenosine Triphosphate MeSH
- Fatty Acids MeSH
- Triglycerides MeSH
- Ucp1 protein, mouse MeSH Browser
- Uncoupling Protein 1 MeSH
OBJECTIVE: Administration of FGF21 to mice reduces body weight and increases body temperature. The increase in body temperature is generally interpreted as hyperthermia, i.e. a condition secondary to the increase in energy expenditure (heat production). Here, we examine an alternative hypothesis: that FGF21 has a direct pyrexic effect, i.e. FGF21 increases body temperature independently of any effect on energy expenditure. METHODS: We studied the effects of FGF21 treatment on body temperature and energy expenditure in high-fat-diet-fed and chow-fed mice exposed acutely to various ambient temperatures, in high-fat diet-fed mice housed at 30 °C (i.e. at thermoneutrality), and in mice lacking uncoupling protein 1 (UCP1). RESULTS: In every model studied, FGF21 increased body temperature, but energy expenditure was increased only in some models. The effect of FGF21 on body temperature was more (not less, as expected in hyperthermia) pronounced at lower ambient temperatures. Effects on body temperature and energy expenditure were temporally distinct (daytime versus nighttime). FGF21 enhanced UCP1 protein content in brown adipose tissue (BAT); there was no measurable UCP1 protein in inguinal brite/beige adipose tissue. FGF21 increased energy expenditure through adrenergic stimulation of BAT. In mice lacking UCP1, FGF21 did not increase energy expenditure but increased body temperature by reducing heat loss, e.g. a reduced tail surface temperature. CONCLUSION: The effect of FGF21 on body temperature is independent of UCP1 and can be achieved in the absence of any change in energy expenditure. Since elevated body temperature is a primary effect of FGF21 and can be achieved without increasing energy expenditure, only limited body weight-lowering effects of FGF21 may be expected.
- Keywords
- Beiging/browning, Body temperature control, Obesity, Thermoneutrality, UCP1,
- MeSH
- Diet, High-Fat adverse effects MeSH
- Energy Metabolism drug effects MeSH
- Fibroblast Growth Factors administration & dosage pharmacology MeSH
- Mice, Inbred C57BL MeSH
- Mice, Knockout MeSH
- Mice MeSH
- Body Temperature drug effects MeSH
- Uncoupling Protein 1 deficiency metabolism MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- fibroblast growth factor 21 MeSH Browser
- Fibroblast Growth Factors MeSH
- Ucp1 protein, mouse MeSH Browser
- Uncoupling Protein 1 MeSH
Long-chain n-3 polyunsaturated fatty acids (Omega-3) and anti-diabetic drugs thiazolidinediones (TZDs) exhibit additive effects in counteraction of dietary obesity and associated metabolic dysfunctions in mice. The underlying mechanisms need to be clarified. Here, we aimed to learn whether the futile cycle based on the hydrolysis of triacylglycerol and re-esterification of fatty acids (TAG/FA cycling) in white adipose tissue (WAT) could be involved. We compared Omega-3 (30 mg/g diet) and two different TZDs-pioglitazone (50 mg/g diet) and a second-generation TZD, MSDC-0602K (330 mg/g diet)-regarding their effects in C57BL/6N mice fed an obesogenic high-fat (HF) diet for 8 weeks. The diet was supplemented or not by the tested compound alone or with the two TZDs combined individually with Omega-3. Activity of TAG/FA cycle in WAT was suppressed by the obesogenic HF diet. Additive effects in partial rescue of TAG/FA cycling in WAT were observed with both combined interventions, with a stronger effect of Omega-3 and MSDC-0602K. Our results (i) supported the role of TAG/FA cycling in WAT in the beneficial additive effects of Omega-3 and TZDs on metabolism of diet-induced obese mice, and (ii) showed differential modulation of WAT gene expression and metabolism by the two TZDs, depending also on Omega-3.
- Keywords
- adipocytes, glucose homeostasis, insulin, lipogenesis, obesity,
- MeSH
- Adipose Tissue, White metabolism MeSH
- Diet, High-Fat MeSH
- Hypoglycemic Agents pharmacology MeSH
- Lipogenesis drug effects MeSH
- Fatty Acids metabolism MeSH
- Lipid Metabolism drug effects MeSH
- Mice, Inbred C57BL MeSH
- Mice, Obese MeSH
- Mice MeSH
- Obesity drug therapy metabolism MeSH
- Fatty Acids, Omega-3 administration & dosage pharmacology MeSH
- Pioglitazone pharmacology MeSH
- Thiazolidinediones administration & dosage pharmacology MeSH
- Triglycerides metabolism MeSH
- Adipocytes drug effects MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Hypoglycemic Agents MeSH
- Fatty Acids MeSH
- Fatty Acids, Omega-3 MeSH
- Pioglitazone MeSH
- Thiazolidinediones MeSH
- Triglycerides MeSH
Methylglyoxal (MG), a potent precursor of advanced glycation end-products (AGE), is increased in metabolic disorders such as diabetes and obesity. MG and other dicarbonyl metabolites are detoxified by the glyoxalase system in which glyoxalase 1, coded by the Glo1 gene, serves as the rate-limiting enzyme. In this study, we analyzed the effects of Glo1 downregulation on glucose and lipid metabolism parameters in spontaneously hypertensive rats (SHR) by targeting the Glo1 gene (SHR-Glo1+/- heterozygotes). Compared to SHR wild-type animals, SHR-Glo1+/- rats showed significantly reduced Glo1 expression and lower GLO1 activity in tissues associated with increased MG levels. In contrast to SHR controls, SHR-Glo1+/- rats exhibited lower relative weight of epididymal fat, reduced ectopic fat accumulation in the liver and heart, and decreased serum triglycerides. In addition, compared to controls, SHR-Glo1+/- rats showed reduced serum insulin and increased basal and insulin stimulated incorporation of glucose into white adipose tissue lipids (lipogenesis). Reduced ectopic fat accumulation in the heart was associated with significantly increased pAMPK/AMPK ratio and GLUT4 activity. These results provide evidence that Glo1 downregulation in SHR is associated with reduced adiposity and ectopic fat accumulation, most likely mediated by AMPK activation in the heart.
- Keywords
- AMPK, GLUT4, Glo1 gene knockdown, adipose tissue, heart, insulin resistance, methylglyoxal, spontaneously hypertensive rat,
- Publication type
- Journal Article MeSH
Branched esters of palmitic acid and hydroxystearic acid (PAHSA) are anti-inflammatory and antidiabetic lipokines that connect glucose and lipid metabolism. We aimed to characterize involvement of the 5-PAHSA regioisomer in the adaptive metabolic response of white adipose tissue (WAT) to cold exposure (CE) in mice, exploring the cross talk between glucose utilization and lipid metabolism. CE promoted local production of 5- and 9-PAHSAs in WAT. Metabolic labeling of de novo lipogenesis (DNL) using 2H2O revealed that 5-PAHSA potentiated the effects of CE and stimulated triacylglycerol (TAG)/fatty acid (FA) cycling in WAT through impacting lipogenesis and lipolysis. Adipocyte lipolytic products were altered by 5-PAHSA through selective FA re-esterification. The impaired lipolysis in global adipose triglyceride lipase (ATGL) knockout mice reduced free PAHSA levels and uncovered a metabolite reservoir of TAG-bound PAHSAs (TAG estolides) in WAT. Utilization of 13C isotope tracers and dynamic metabolomics documented that 5-PAHSA primes adipocytes for glucose metabolism in a different way from insulin, promoting DNL and impeding TAG synthesis. In summary, our data reveal new cellular and physiological mechanisms underlying the beneficial effects of 5-PAHSA and its relation to insulin action in adipocytes and independently confirm a PAHSA metabolite reservoir linked to ATGL-mediated lipolysis.
- MeSH
- Adipose Tissue, White metabolism MeSH
- Glucose metabolism MeSH
- Carbon Isotopes MeSH
- Palmitic Acid metabolism MeSH
- Stearic Acids metabolism MeSH
- Lipase genetics metabolism MeSH
- Lipogenesis genetics MeSH
- Lipolysis MeSH
- Fatty Acids metabolism MeSH
- Metabolomics MeSH
- Mice, Knockout MeSH
- Mice MeSH
- Cold Temperature MeSH
- Deuterium Oxide MeSH
- Triglycerides metabolism MeSH
- Adipocytes metabolism MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- 5-PAHSA MeSH Browser
- 9-PAHSA MeSH Browser
- Glucose MeSH
- Carbon Isotopes MeSH
- Palmitic Acid MeSH
- Stearic Acids MeSH
- Lipase MeSH
- Fatty Acids MeSH
- Deuterium Oxide MeSH
- PNPLA2 protein, mouse MeSH Browser
- Triglycerides MeSH
Uncoupling protein 1 (UCP1) executes thermogenesis in brown adipose tissue, which is a major focus of human obesity research. Although the UCP1-knockout (UCP1 KO) mouse represents the most frequently applied animal model to judge the anti-obesity effects of UCP1, the assessment is confounded by unknown anti-obesity factors causing paradoxical obesity resistance below thermoneutral temperatures. Here we identify the enigmatic factor as endogenous FGF21, which is primarily mediating obesity resistance. The generation of UCP1/FGF21 double-knockout mice (dKO) fully reverses obesity resistance. Within mild differences in energy metabolism, urine metabolomics uncover increased secretion of acyl-carnitines in UCP1 KOs, suggesting metabolic reprogramming. Strikingly, transcriptomics of metabolically important organs reveal enhanced lipid and oxidative metabolism in specifically white adipose tissue that is fully reversed in dKO mice. Collectively, this study characterizes the effects of endogenous FGF21 that acts as master regulator to protect from diet-induced obesity in the absence of UCP1.
- MeSH
- Adipose Tissue, White metabolism MeSH
- Energy Metabolism MeSH
- Fibroblast Growth Factors genetics metabolism MeSH
- Adipose Tissue, Brown metabolism MeSH
- Humans MeSH
- Mice, Inbred C57BL MeSH
- Mice, Knockout MeSH
- Mice MeSH
- Obesity genetics metabolism MeSH
- Signal Transduction MeSH
- Uncoupling Protein 1 genetics metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- fibroblast growth factor 21 MeSH Browser
- Fibroblast Growth Factors MeSH
- Uncoupling Protein 1 MeSH
We found previously that white adipose tissue (WAT) hyperplasia in obese mice was limited by dietary omega-3 polyunsaturated fatty acids (omega-3 PUFA). Here we aimed to characterize the underlying mechanism. C57BL/6N mice were fed a high-fat diet supplemented or not with omega-3 PUFA for one week or eight weeks; mice fed a standard chow diet were also used. In epididymal WAT (eWAT), DNA content was quantified, immunohistochemical analysis was used to reveal the size of adipocytes and macrophage content, and lipidomic analysis and a gene expression screen were performed to assess inflammatory status. The stromal-vascular fraction of eWAT, which contained most of the eWAT cells, except for adipocytes, was characterized using flow cytometry. Omega-3 PUFA supplementation limited the high-fat diet-induced increase in eWAT weight, cell number (DNA content), inflammation, and adipocyte growth. eWAT hyperplasia was compromised due to the limited increase in the number of preadipocytes and a decrease in the number of endothelial cells. The number of leukocytes and macrophages was unaffected, but a shift in macrophage polarization towards a less inflammatory phenotype was observed. Our results document that the counteraction of eWAT hyperplasia by omega-3 PUFA in dietary-obese mice reflects an effect on the number of adipose lineage and endothelial cells.
- Keywords
- adipocyte, cellularity, fat, nutrition, obesity, proliferation, white adipose tissue,
- MeSH
- Adipose Tissue, White drug effects MeSH
- Diet, High-Fat MeSH
- Endothelial Cells drug effects MeSH
- Macrophages drug effects pathology MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Fatty Acids, Omega-3 administration & dosage MeSH
- Cell Proliferation drug effects MeSH
- Adipocytes cytology drug effects MeSH
- Inflammation pathology MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Fatty Acids, Omega-3 MeSH
Fatty acid esters of hydroxy fatty acids (FAHFAs) are lipid mediators with promising antidiabetic and anti-inflammatory properties that are formed in white adipose tissue (WAT) via de novo lipogenesis, but their biosynthetic enzymes are unknown. Using a combination of lipidomics in WAT, quantitative trait locus mapping, and correlation analyses in rat BXH/HXB recombinant inbred strains, as well as response to oxidative stress in murine models, we elucidated the potential pathway of biosynthesis of several FAHFAs. Comprehensive analysis of WAT samples identified ∼160 regioisomers, documenting the complexity of this lipid class. The linkage analysis highlighted several members of the nuclear factor, erythroid 2 like 2 (Nrf2)-mediated antioxidant defense system (Prdx6, Mgst1, Mgst3), lipid-handling proteins (Cd36, Scd6, Acnat1, Acnat2, Baat), and the family of flavin containing monooxygenases (Fmo) as the positional candidate genes. Transgenic expression of Nrf2 and deletion of Prdx6 genes resulted in reduction of palmitic acid ester of 9-hydroxystearic acid (9-PAHSA) and 11-PAHSA levels, while oxidative stress induced by an inhibitor of glutathione synthesis increased PAHSA levels nonspecifically. Our results indicate that the synthesis of FAHFAs via carbohydrate-responsive element-binding protein-driven de novo lipogenesis depends on the adaptive antioxidant system and suggest that FAHFAs may link activity of this system with insulin sensitivity in peripheral tissues.
- MeSH
- Adipose Tissue, White enzymology metabolism MeSH
- Biomarkers metabolism MeSH
- Esters chemistry metabolism MeSH
- NF-E2-Related Factor 2 genetics metabolism MeSH
- Rats MeSH
- Palmitic Acid chemistry metabolism MeSH
- Stearic Acids chemistry metabolism MeSH
- Metabolomics methods MeSH
- Mice, Inbred C57BL MeSH
- Mice, Knockout MeSH
- Random Allocation MeSH
- Oxidative Stress * MeSH
- Peroxiredoxin VI genetics metabolism MeSH
- Rats, Inbred BN MeSH
- Rats, Inbred SHR MeSH
- Rats, Transgenic MeSH
- Gene Expression Regulation, Enzymologic * MeSH
- Gene Expression Profiling MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- 9-hydroxystearic acid MeSH Browser
- Biomarkers MeSH
- Esters MeSH
- NF-E2-Related Factor 2 MeSH
- Palmitic Acid MeSH
- Stearic Acids MeSH
- Nfe2l2 protein, mouse MeSH Browser
- Nfe2l2 protein, rat MeSH Browser
- Peroxiredoxin VI MeSH
- Prdx6 protein, mouse MeSH Browser