Most cited article - PubMed ID 28024589
Temperature-responsive PLLA/PNIPAM nanofibers for switchable release
Bacterial environmental colonization and subsequent biofilm formation on surfaces represents a significant and alarming problem in various fields, ranging from contamination of medical devices up to safe food packaging. Therefore, the development of surfaces resistant to bacterial colonization is a challenging and actively solved task. In this field, the current promising direction is the design and creation of nanostructured smart surfaces with on-demand activated amicrobial protection. Various surface activation methods have been described recently. In this review article, we focused on the "physical" activation of nanostructured surfaces. In the first part of the review, we briefly describe the basic principles and common approaches of external stimulus application and surface activation, including the temperature-, light-, electric- or magnetic-field-based surface triggering, as well as mechanically induced surface antimicrobial protection. In the latter part, the recent achievements in the field of smart antimicrobial surfaces with physical activation are discussed, with special attention on multiresponsive or multifunctional physically activated coatings. In particular, we mainly discussed the multistimuli surface triggering, which ensures a better degree of surface properties control, as well as simultaneous utilization of several strategies for surface protection, based on a principally different mechanism of antimicrobial action. We also mentioned several recent trends, including the development of the to-detect and to-kill hybrid approach, which ensures the surface activation in a right place at a right time.
- Keywords
- antifouling surface, antimicrobial coatings, biomedical applications, physical stimuli, smart coatings, smart nanomaterials, tailored surface,
- Publication type
- Journal Article MeSH
- Review MeSH
The usage of three-dimensional (3D) printed materials in many bioapplications has been one of the fastest-growing sectors in the nanobiomaterial industry in the last couple of years. In this work, we present a chemical approach for grafting silver nanoparticles (AgNPs) into a resin matrix, which is convenient for 3D printing. In this way, the samples can be prepared and are able to release silver ions (Ag+) with excellent antibacterial effect against bacterial strains of E. coli and S. epidermidis. By the proposed process, the AgNPs are perfectly mixed and involved in the polymerization process and their distribution in the matrix is homogenous. It was also demonstrated that this approach does not affect the printing resolution and the resin is therefore suitable for the construction of microstructures enabling controlled silver ion release and antifouling properties. At the same time the physical properties of the material, such as viscosity and elasticity modulus are preserved. The described approach can be used for the fabrication of facile, low-cost 3D printed resin with antifouling-antibacterial properties with the possibility to control the release of Ag+ through microstructuring.
- Keywords
- CAD/CAM, antibacterial activity, antifouling properties, biomaterial, diazonium salt, silver nanoparticles,
- Publication type
- Journal Article MeSH
A laser induced periodic surface structure (LIPSS) on graphene doped polystyrene was prepared by the means of a krypton fluoride (KrF) laser with the wavelength of 248 nm and precisely desired physico-chemical properties were obtained for the structure. Surface morphology after laser modification of polystyrene (PS) doped with graphene nanoplatelets (GNP) was studied. Laser fluence values of modifying laser light varied between 0-40 mJ·cm-2 and were used on polymeric PS substrates doped with 10, 20, 30, and 40 wt. % of GNP. GNP were incorporated into PS substrate with the solvent casting method and further laser modification was achieved with the same amount of laser pulses of 6000. Formed nanostructures with a periodic pattern were examined by atomic force microscopy (AFM). The morphology was also studied with scanning electron microscopy SEM. Laser irradiation resulted in changes of chemical composition on the PS surface, such as growth of oxygen concentration. This was confirmed with energy-dispersive X-ray spectroscopy (EDS).
- Keywords
- laser exposure, nanocomposites, polymers,
- Publication type
- Journal Article MeSH