Most cited article - PubMed ID 28389650
Aqueous Solution Chemistry of Ammonium Cation in the Auger Time Window
ConspectusPhotochemical reactions have always been the source of a great deal of mystery. While classified as a type of chemical reaction, no doubts are allowed that the general tenets of ground-state chemistry do not directly apply to photochemical reactions. For a typical chemical reaction, understanding the critical points of the ground-state potential (free) energy surface and embedding them in a thermodynamics framework is often enough to infer reaction yields or characteristic time scales. A general working principle is that the energy profile along the minimum energy paths provides the key information to characterize the reaction. These well-developed concepts, unfortunately, rarely stretch to processes involving the formation of a nonstationary state for a molecular system after light absorption.Upon photoexcitation, a molecule is likely to undergo internal conversion processes, that is, changes of electronic states mediated by couplings between nuclear and electronic motion, precisely what the celebrated Born-Oppenheimer approximation neglects. These coupled electron-nuclear processes, coined nonadiabatic processes, allow for the molecule to decay from one electronic state to the other nonradiatively. Understanding the intricate nonadiabatic dynamics is pivotal to rationalizing and predicting the outcome of a molecular photoexcitation and providing insights for experiments conducted, for example, in advanced light sources such as free-electron lasers.Nowadays, most simulations in nonadiabatic molecular dynamics are based on approximations that invoke a near-classical depiction of the nuclei. This reliance is due to practical constraints, and the classical equations of motion for the nuclei must be supplemented by techniques such as surface hopping to account for nonadiabatic transitions between electronic states. A critical but often overlooked aspect of these simulations is the selection of initial conditions, specifically the choice of initial nuclear positions and momenta for the nonadiabatic dynamics, which can significantly influence how well the simulations mimic real quantum systems across various experimental scenarios. The conventional approach for generating initial conditions for nonadiabatic dynamics typically maps the initial state onto a nuclear phase space using a Wigner quasiprobability function within a harmonic approximation, followed by a second approximation where the molecule undergoes a sudden excitation.In this Account, we aim to warn the experienced or potential user of nonadiabatic molecular dynamics about the possible limitations of this strategy for initial-condition generation and its inability to accurately describe the photoexcitation of a molecule. More specifically, we argue that the initial phase-space distribution can be more accurately represented through molecular dynamics simulations by using a quantum thermostat. This method offers a robust framework that can be applied to large, flexible, or even solvated molecular systems. Furthermore, the reliability of this strategy can be benchmarked against more rigorous approaches such as path integral molecular dynamics. Additionally, the commonly used sudden approximation, which assumes a vertical and sudden excitation of a molecule, rarely reflects the excitation triggered by laser pulses used in actual photochemical and spectroscopic experiments. We discuss here a more general approach that can generate initial conditions for any type of laser pulse. We also discuss strategies to tackle excitation triggered by a continuous-wave laser.
- Publication type
- Journal Article MeSH
Charge transfer between molecules lies at the heart of many chemical processes. Here, we focus on the ultrafast electron dynamics associated with the formation of charge-transfer-to-solvent (CTTS) states following X-ray absorption in aqueous solutions of Na+, Mg2+, and Al3+ ions. To explore the formation of such states in the aqueous phase, liquid-jet photoemission spectroscopy is employed. Using the core-hole-clock method, based on Auger-Meitner (AM) decay upon 1s excitation or ionization of the respective ions, upper limits are estimated for the metal-atom electron delocalization times to the neighboring water molecules. These delocalization processes represent the first steps in the formation of hydrated electrons, which are determined to take place on a timescale ranging from several hundred attoseconds (as) below the 1s ionization threshold to only 20 as far above the 1s ionization threshold. The decrease in the delocalization times as a function of the photon energy is continuous. This indicates that the excited electrons remain in the vicinity of the studied ions even above the ionization threshold, i.e., metal-ion electronic resonances associated with the CTTS state manifolds are formed. The three studied isoelectronic ions exhibit quantitative differences in their electron energetics and delocalization times, which are linked to the character of the respective excited states.
- Publication type
- Journal Article MeSH
Liquid-jet photoemission spectroscopy (LJ-PES) directly probes the electronic structure of solutes and solvents. It also emerges as a novel tool to explore chemical structure in aqueous solutions, yet the scope of the approach has to be examined. Here, we present a pH-dependent liquid-jet photoelectron spectroscopic investigation of ascorbic acid (vitamin C). We combine core-level photoelectron spectroscopy and ab initio calculations, allowing us to site-specifically explore the acid-base chemistry of the biomolecule. For the first time, we demonstrate the capability of the method to simultaneously assign two deprotonation sites within the molecule. We show that a large change in chemical shift appears even for atoms distant several bonds from the chemically modified group. Furthermore, we present a highly efficient and accurate computational protocol based on a single structure using the maximum-overlap method for modeling core-level photoelectron spectra in aqueous environments. This work poses a broader question: to what extent can LJ-PES complement established structural techniques such as nuclear magnetic resonance? Answering this question is highly relevant in view of the large number of incorrect molecular structures published.
- Publication type
- Journal Article MeSH
We report the first nitrogen 1s Auger-Meitner electron spectrum from a liquid ammonia microjet at a temperature of ∼223 K (-50 °C) and compare it with the simultaneously measured spectrum for gas-phase ammonia. The spectra from both phases are interpreted with the assistance of high-level electronic structure and ab initio molecular dynamics calculations. In addition to the regular Auger-Meitner-electron features, we observe electron emission at kinetic energies of 374-388 eV, above the leading Auger-Meitner peak (3a1 2). Based on the electronic structure calculations, we assign this peak to a shake-up satellite in the gas phase, i.e., Auger-Meitner emission from an intermediate state with additional valence excitation present. The high-energy contribution is significantly enhanced in the liquid phase. We consider various mechanisms contributing to this feature. First, in analogy with other hydrogen-bonded liquids (noticeably water), the high-energy signal may be a signature for an ultrafast proton transfer taking place before the electronic decay (proton transfer mediated charge separation). The ab initio dynamical calculations show, however, that such a process is much slower than electronic decay and is, thus, very unlikely. Next, we consider a non-local version of the Auger-Meitner decay, the Intermolecular Coulombic Decay. The electronic structure calculations support an important contribution of this purely electronic mechanism. Finally, we discuss a non-local enhancement of the shake-up processes.
- Publication type
- Journal Article MeSH
Liquid-jet photoelectron spectroscopy was applied to determine the first acid dissociation constant (pKa) of aqueous-phase glucose while simultaneously identifying the spectroscopic signature of the respective deprotonation site. Valence spectra from solutions at pH values below and above the first pKa reveal a change in glucose's lowest ionization energy upon the deprotonation of neutral glucose and the subsequent emergence of its anionic counterpart. Site-specific insights into the solution-pH-dependent molecular structure changes are also shown to be accessible via C 1s photoelectron spectroscopy. The spectra reveal a considerably lower C 1s binding energy of the carbon site associated with the deprotonated hydroxyl group. The occurrence of photoelectron spectral fingerprints of cyclic and linear glucose prior to and upon deprotonation are also discussed. The experimental data are interpreted with the aid of electronic structure calculations. Our findings highlight the potential of liquid-jet photoelectron spectroscopy to act as a site-selective probe of the molecular structures that underpin the acid-base chemistry of polyprotic systems with relevance to environmental chemistry and biochemistry.
- Publication type
- Journal Article MeSH
Intermolecular Coulombic decay (ICD) is a ubiquitous relaxation channel of electronically excited states in weakly bound systems, ranging from dimers to liquids. As it is driven by electron correlation, it was assumed that it will dominate over more established energy loss mechanisms, for example fluorescence. Here, we use electron-electron coincidence spectroscopy to determine the efficiency of the ICD process after 2a1 ionization in water clusters. We show that this efficiency is surprisingly low for small water clusters and that it gradually increases to 40-50% for clusters with hundreds of water units. Ab initio molecular dynamics simulations reveal that proton transfer between neighboring water molecules proceeds on the same timescale as ICD and leads to a configuration in which the ICD channel is closed. This conclusion is further supported by experimental results from deuterated water. Combining experiment and theory, we infer an intrinsic ICD lifetime of 12-52 fs for small water clusters.
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH