Nejvíce citovaný článek - PubMed ID 28421042
Mosquito Microbiome Dynamics, a Background for Prevalence and Seasonality of West Nile Virus
Variation along environmental gradients in host-associated microbial communities is not well understood compared to free-living microbial communities. Because elevational gradients may serve as natural proxies for climate change, understanding patterns along these gradients can inform our understanding of the threats hosts and their symbiotic microbes face in a warming world. In this study, we analyzed bacterial microbiomes from pupae and adults of four Drosophila species native to Australian tropical rainforests. We sampled wild individuals at high and low elevations along two mountain gradients to determine natural diversity patterns. Further, we sampled laboratory-reared individuals from isofemale lines established from the same localities to see if any natural patterns are retained in the lab. In both environments, we controlled for diet to help elucidate other deterministic patterns of microbiome composition. We found small but significant differences in Drosophila bacterial community composition across elevation, with some notable taxonomic differences between different Drosophila species and sites. Further, we found that field-collected fly pupae had significantly richer microbiomes than laboratory-reared pupae. We also found similar microbiome composition in both types of provided diet, suggesting that the significant differences found among Drosophila microbiomes are the products of surrounding environments with different bacterial species pools, possibly bound to elevational differences in temperature. Our results suggest that comparative studies between lab and field specimens help reveal the true variability in microbiome communities that can exist within a single species. IMPORTANCE Bacteria form microbial communities inside most higher-level organisms, but we know little about how the microbiome varies along environmental gradients and between natural host populations and laboratory colonies. To explore such effects on insect-associated microbiomes, we studied the gut microbiome in four Drosophila species over two mountain gradients in tropical Australia. We also compared these data to individuals kept in the laboratory to understand how different settings changed microbiome communities. We found that field-sampled individuals had significantly higher microbiome diversity than those from the lab. In wild Drosophila populations, elevation explains a small but significant amount of the variation in their microbial communities. Our study highlights the importance of environmental bacterial sources for Drosophila microbiome composition across elevational gradients and shows how comparative studies help reveal the true flexibility in microbiome communities that can exist within a species.
- Klíčová slova
- Drosophila, bacteria, community, ecology, elevation gradient, field and laboratory, metabarcoding, microbiome, symbiosis,
- MeSH
- Bacteria genetika MeSH
- Drosophila mikrobiologie MeSH
- mikrobiota * MeSH
- střevní mikroflóra * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Austrálie MeSH
Psyllids are phloem-feeding insects that can transmit plant pathogens such as phytoplasmas, intracellular bacteria causing numerous plant diseases worldwide. Their microbiomes are essential for insect physiology and may also influence the capacity of vectors to transmit pathogens. Using 16S rRNA gene metabarcoding, we compared the microbiomes of three sympatric psyllid species associated with pear trees in Central Europe. All three species are able to transmit 'Candidatus Phytoplasma pyri', albeit with different efficiencies. Our results revealed potential relationships between insect biology and microbiome composition that varied during psyllid ontogeny and between generations in Cacopsylla pyri and C. pyricola, as well as between localities in C. pyri. In contrast, no variations related to psyllid life cycle and geography were detected in C. pyrisuga. In addition to the primary endosymbiont Carsonella ruddii, we detected another highly abundant endosymbiont (unclassified Enterobacteriaceae). C. pyri and C. pyricola shared the same taxon of Enterobacteriaceae which is related to endosymbionts harboured by other psyllid species from various families. In contrast, C. pyrisuga carried a different Enterobacteriaceae taxon related to the genus Sodalis. Our study provides new insights into host-symbiont interactions in psyllids and highlights the importance of host biology and geography in shaping microbiome structure.
- MeSH
- Enterobacteriaceae genetika MeSH
- Hemiptera * mikrobiologie MeSH
- hmyz MeSH
- lidé MeSH
- mikrobiota * genetika MeSH
- Pyrus * MeSH
- RNA ribozomální 16S genetika MeSH
- symbióza MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- RNA ribozomální 16S MeSH
Wolbachia is one of the most abundant intracellular symbionts of arthropods and has profound effects on host biology. Wolbachia transmission and host phenotypes often depend on its density within the host, which can be affected by multiple biotic and abiotic factors. However, very few studies measured Wolbachia density in natural host populations. Here, we describe Wolbachia in the pear psyllid Cacopsylla pyri from three populations in the Czech Republic. Using phylogenetic analyses based on wsp and multilocus sequence typing genes, we demonstrate that C. pyri harbours three new Wolbachia strains from supergroup B. A fourth Wolbachia strain from supergroup A was also detected in parasitised immatures of C. pyri, but likely came from a hymenopteran parasitoid. To obtain insights into natural Wolbachia infection dynamics, we quantified Wolbachia in psyllid individuals from the locality with the highest prevalence across an entire year, spanning several seasonal generations of the host. All tested females were infected and Wolbachia density remained stable across the entire period, suggesting a highly efficient vertical transmission and little influence from the environment and different host generations. In contrast, we observed a tendency towards reduced Wolbachia density in males which may suggest sex-related differences in Wolbachia-psyllid interactions.
- MeSH
- fylogeneze MeSH
- Hemiptera * genetika MeSH
- Pyrus * MeSH
- roční období MeSH
- Wolbachia * genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Kissing bugs (Triatominae) are blood-feeding insects best known as the vectors of Trypanosoma cruzi, the causative agent of Chagas' disease. Considering the high epidemiological relevance of these vectors, their biology and bacterial symbiosis remains surprisingly understudied. While previous investigations revealed generally low individual complexity but high among-individual variability of the triatomine microbiomes, any consistent microbiome determinants have not yet been identified across multiple Triatominae species. METHODS: To obtain a more comprehensive view of triatomine microbiomes, we investigated the host-microbiome relationship of five Triatoma species sampled from white-throated woodrat (Neotoma albigula) nests in multiple locations across the USA. We applied optimised 16S rRNA gene metabarcoding with a novel 18S rRNA gene blocking primer to a set of 170 T. cruzi-negative individuals across all six instars. RESULTS: Triatomine gut microbiome composition is strongly influenced by three principal factors: ontogeny, species identity, and the environment. The microbiomes are characterised by significant loss in bacterial diversity throughout ontogenetic development. First instars possess the highest bacterial diversity while adult microbiomes are routinely dominated by a single taxon. Primarily, the bacterial genus Dietzia dominates late-stage nymphs and adults of T. rubida, T. protracta, and T. lecticularia but is not present in the phylogenetically more distant T. gerstaeckeri and T. sanguisuga. Species-specific microbiome composition, particularly pronounced in early instars, is further modulated by locality-specific effects. In addition, pathogenic bacteria of the genus Bartonella, acquired from the vertebrate hosts, are an abundant component of Triatoma microbiomes. CONCLUSION: Our study is the first to demonstrate deterministic patterns in microbiome composition among all life stages and multiple Triatoma species. We hypothesise that triatomine microbiome assemblages are produced by species- and life stage-dependent uptake of environmental bacteria and multiple indirect transmission strategies that promote bacterial transfer between individuals. Altogether, our study highlights the complexity of Triatominae symbiosis with bacteria and warrant further investigation to understand microbiome function in these important vectors. Video abstract.
- Klíčová slova
- Bacteria, Blood, Hematophagous, Insect, Microbiome, Ontogeny, Pathogen, Triatominae, Vector,
- MeSH
- Chagasova nemoc parazitologie MeSH
- divoká zvířata klasifikace mikrobiologie MeSH
- mikrobiota genetika fyziologie MeSH
- RNA ribozomální 16S genetika MeSH
- Triatominae klasifikace mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- audiovizuální média MeSH
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- RNA ribozomální 16S MeSH
Symbiotic bacteria affect competence for pathogen transmission in insect vectors, including mosquitoes. However, knowledge on mosquito-microbiome-pathogen interactions remains limited, largely due to methodological reasons. The current, cost-effective practice of sample pooling used in mosquito surveillance and epidemiology prevents correlation of individual traits (i.e., microbiome profile) and infection status. Moreover, many mosquito studies employ laboratory-reared colonies that do not necessarily reflect the natural microbiome composition and variation in wild populations. As a consequence, epidemiological and microbiome studies in mosquitoes are to some extent uncoupled, and the interactions among pathogens, microbiomes, and natural mosquito populations remain poorly understood. This study focuses on the effect the pooling practice poses on mosquito microbiome profiles, and tests different approaches to find an optimized low-cost methodology for extensive sampling while allowing for accurate, individual-level microbiome studies. We tested the effect of pooling by comparing wild-caught, individually processed mosquitoes with pooled samples. With individual mosquitoes, we also tested two methodological aspects that directly affect the cost and feasibility of broad-scale molecular studies: sample preservation and tissue dissection. Pooling affected both alpha- and beta-diversity measures of the microbiome, highlighting the importance of using individual samples when possible. Both RNA and DNA yields were higher when using inexpensive reagents such as NAP (nucleic acid preservation) buffer or absolute ethanol, without freezing for short-term storage. Microbiome alpha- and beta-diversity did not show overall significant differences between the tested treatments compared to the controls (freshly extracted samples or dissected guts). However, the use of standardized protocols is highly recommended to avoid methodological bias in the data.
- Klíčová slova
- dissection, epidemiology, microbiome, mosquito, pooling, preservation, vector,
- MeSH
- Aedes mikrobiologie MeSH
- Bacteria klasifikace genetika MeSH
- Culex mikrobiologie MeSH
- komáří přenašeči mikrobiologie MeSH
- mikrobiologické techniky MeSH
- mikrobiota * MeSH
- ochrana biologická MeSH
- střevní mikroflóra MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Microbial organisms are ubiquitous in nature and often form communities closely associated with their host, referred to as the microbiome. The microbiome has strong influence on species interactions, but microbiome studies rarely take interactions between hosts into account, and network interaction studies rarely consider microbiomes. Here, we propose to use metacommunity theory as a framework to unify research on microbiomes and host communities by considering host insects and their microbes as discretely defined "communities of communities" linked by dispersal (transmission) through biotic interactions. We provide an overview of the effects of heritable symbiotic bacteria on their insect hosts and how those effects subsequently influence host interactions, thereby altering the host community. We suggest multiple scenarios for integrating the microbiome into metacommunity ecology and demonstrate ways in which to employ and parameterize models of symbiont transmission to quantitatively assess metacommunity processes in host-associated microbial systems. Successfully incorporating microbiota into community-level studies is a crucial step for understanding the importance of the microbiome to host species and their interactions.
- Klíčová slova
- bacteria, dispersal, heritable, insect, metacommunity, microbiome, species interactions, symbiont, transmission,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Insect microbiomes influence many fundamental host traits, including functions of practical significance such as their capacity as vectors to transmit parasites and pathogens. The knowledge on the diversity and development of the gut microbiomes in various blood feeding insects is thus crucial not only for theoretical purposes, but also for the development of better disease control strategies. In Triatominae (Heteroptera: Reduviidae), the blood feeding vectors of Chagas disease in South America and parts of North America, the investigation of the microbiomes is in its infancy. The few studies done on microbiomes of South American Triatominae species indicate a relatively low taxonomic diversity and a high host specificity. We designed a comparative survey to serve several purposes: (I) to obtain a better insight into the overall microbiome diversity in different species, (II) to check the long term stability of the interspecific differences, (III) to describe the ontogenetic changes of the microbiome, and (IV) to determine the potential correlation between microbiome composition and presence of Trypanosoma cruzi, the causative agent of Chagas disease. Using 16S amplicons of two abundant species from the southern US, and four laboratory reared colonies, we showed that the microbiome composition is determined by host species, rather than locality or environment. The OTUs (Operational Taxonomic Units) determination confirms a low microbiome diversity, with 12-17 main OTUs detected in wild populations of T. sanguisuga and T. protracta. Among the dominant bacterial taxa are Acinetobacter and Proteiniphilum but also the symbiotic bacterium Arsenophonus triatominarum, previously believed to only live intracellularly. The possibility of ontogenetic microbiome changes was evaluated in all six developmental stages and feces of the laboratory reared model Rhodnius prolixus. We detected considerable changes along the host's ontogeny, including clear trends in the abundance variation of the three dominant bacteria, namely Enterococcus, Acinetobacter, and Arsenophonus. Finally, we screened the samples for the presence of Trypanosoma cruzi. Comparing the parasite presence with the microbiome composition, we assessed the possible significance of the latter in the epidemiology of the disease. Particularly, we found a trend toward more diverse microbiomes in Trypanosoma cruzi positive T. protracta specimens.
- Klíčová slova
- Rhodnius prolixus, Triatominae, Trypanosoma cruzi, microbiome, ontogeny,
- Publikační typ
- časopisecké články MeSH