Most cited article - PubMed ID 28534877
Light enhances the growth rates of natural populations of aerobic anoxygenic phototrophic bacteria
Glacier-fed streams (GFS) feature among Earth's most extreme aquatic ecosystems marked by pronounced oligotrophy and environmental fluctuations. Microorganisms mainly organize in biofilms within them, but how they cope with such conditions is unknown. Here, leveraging 156 metagenomes from the Vanishing Glaciers project obtained from sediment samples in GFS from 9 mountains ranges, we report thousands of metagenome-assembled genomes (MAGs) encompassing prokaryotes, algae, fungi and viruses, that shed light on biotic interactions within glacier-fed stream biofilms. A total of 2,855 bacterial MAGs were characterized by diverse strategies to exploit inorganic and organic energy sources, in part via functional redundancy and mixotrophy. We show that biofilms probably become more complex and switch from chemoautotrophy to heterotrophy as algal biomass increases in GFS owing to glacier shrinkage. Our MAG compendium sheds light on the success of microbial life in GFS and provides a resource for future research on a microbiome potentially impacted by climate change.
- MeSH
- Bacteria * genetics classification isolation & purification MeSH
- Biodiversity MeSH
- Biofilms growth & development MeSH
- Ecosystem MeSH
- Geologic Sediments microbiology MeSH
- Fungi genetics classification isolation & purification MeSH
- Ice Cover * microbiology MeSH
- Metagenome * MeSH
- Metagenomics MeSH
- Microbiota * genetics MeSH
- Rivers * microbiology MeSH
- Viruses genetics classification MeSH
- Publication type
- Journal Article MeSH
BACKGROUND: Aerobic anoxygenic phototrophs are metabolically highly active, diverse and widespread polyphyletic members of bacterioplankton whose photoheterotrophic capabilities shifted the paradigm about simplicity of the microbial food chain. Despite their considerable contribution to the transformation of organic matter in marine environments, relatively little is still known about their community structure and ecology at fine-scale taxonomic resolution. Up to date, there is no comprehensive (i.e. qualitative and quantitative) analysis of their community composition in the Adriatic Sea. RESULTS: Analysis was based on pufM gene metabarcoding and quantitative FISH-IR approach with the use of artificial neural network. Significant seasonality was observed with regards to absolute abundances (maximum average abundances in spring 2.136 ± 0.081 × 104 cells mL-1, minimum in summer 0.86 × 104 cells mL-1), FISH-IR groups (Roseobacter clade prevalent in autumn, other Alpha- and Gammaproteobacteria in summer) and pufM sequencing data agglomerated at genus-level. FISH-IR results revealed heterogeneity with the highest average relative contribution of AAPs assigned to Roseobacter clade (37.66%), followed by Gammaproteobacteria (35.25%) and general Alphaproteobacteria (31.15%). Community composition obtained via pufM sequencing was dominated by Gammaproteobacteria clade NOR5/OM60, specifically genus Luminiphilus, with numerous rare genera present in relative abundances below 1%. The use of artificial neural network connected this community to biotic (heterotrophic bacteria, HNA and LNA bacteria, Synechococcus, Prochlorococcus, picoeukaryotes, heterotrophic nanoflagellates, bacterial production) and abiotic environmental factors (temperature, salinity, chlorophyll a and nitrate, nitrite, ammonia, total nitrogen, silicate, and orthophosphate concentration). A type of neural network, neural gas analysis at order-, genus- and ASV-level, resulted in five distinct best matching units (representing particular environments) and revealed that high diversity was generally independent of temperature, salinity, and trophic status of the environment, indicating a potentially dissimilar behaviour of aerobic anoxygenic phototrophs compared to the general bacterioplankton. CONCLUSION: This research represents the first comprehensive analysis of aerobic anoxygenic phototrophs in the Adriatic Sea on a trophic gradient during a year-round period. This study is also one of the first reports of their genus-level ecology linked to biotic and abiotic environmental factors revealed by unsupervised neural network algorithm, paving the way for further research of substantial contribution of this important bacterial functional group to marine ecosystems.
- Publication type
- Journal Article MeSH
Aerobic anoxygenic phototrophic (AAP) bacteria harvest light energy using bacteriochlorophyll-containing reaction centers to supplement their mostly heterotrophic metabolism. While their abundance and growth have been intensively studied in coastal environments, much less is known about their activity in oligotrophic open ocean regions. Therefore, we combined in situ sampling in the North Pacific Subtropical Gyre, north of O'ahu island, Hawaii, with two manipulation experiments. Infra-red epifluorescence microscopy documented that AAP bacteria represented approximately 2% of total bacteria in the euphotic zone with the maximum abundance in the upper 50 m. They conducted active photosynthetic electron transport with maximum rates up to 50 electrons per reaction center per second. The in situ decline of bacteriochlorophyll concentration over the daylight period, an estimate of loss rates due to predation, indicated that the AAP bacteria in the upper 50 m of the water column turned over at rates of 0.75-0.90 d-1. This corresponded well with the specific growth rate determined in dilution experiments where AAP bacteria grew at a rate 1.05 ± 0.09 d-1. An amendment of inorganic nitrogen to obtain N:P = 32 resulted in a more than 10 times increase in AAP abundance over 6 days. The presented data document that AAP bacteria are an active part of the bacterioplankton community in the oligotrophic North Pacific Subtropical Gyre and that their growth was mostly controlled by nitrogen availability and grazing pressure.IMPORTANCEMarine bacteria represent a complex assembly of species with different physiology, metabolism, and substrate preferences. We focus on a specific functional group of marine bacteria called aerobic anoxygenic phototrophs. These photoheterotrophic organisms require organic carbon substrates for growth, but they can also supplement their metabolic needs with light energy captured by bacteriochlorophyll. These bacteria have been intensively studied in coastal regions, but rather less is known about their distribution, growth, and mortality in the oligotrophic open ocean. Therefore, we conducted a suite of measurements in the North Pacific Subtropical Gyre to determine the distribution of these organisms in the water column and their growth and mortality rates. A nutrient amendment experiment showed that aerobic anoxygenic phototrophs were limited by inorganic nitrogen. Despite this, they grew more rapidly than average heterotrophic bacteria, but their growth was balanced by intense grazing pressure.
- Keywords
- North Pacific Subtropical Gyre, Station ALOHA, aerobic anoxygenic phototrophs, bacteriochlorophyll a, marine bacteria,
- MeSH
- Bacteria, Aerobic MeSH
- Bacteriochlorophylls * metabolism MeSH
- Nitrogen metabolism MeSH
- Phototrophic Processes * MeSH
- Seawater microbiology MeSH
- Water metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Bacteriochlorophylls * MeSH
- Nitrogen MeSH
- Water MeSH
BACKGROUND: Aerobic anoxygenic phototrophic (AAP) bacteria are heterotrophic bacteria that supply their metabolism with light energy harvested by bacteriochlorophyll-a-containing reaction centers. Despite their substantial contribution to bacterial biomass, microbial food webs, and carbon cycle, their phenology in freshwater lakes remains unknown. Hence, we investigated seasonal variations of AAP abundance and community composition biweekly across 3 years in a temperate, meso-oligotrophic freshwater lake. RESULTS: AAP bacteria displayed a clear seasonal trend with a spring maximum following the bloom of phytoplankton and a secondary maximum in autumn. As the AAP bacteria represent a highly diverse assemblage of species, we followed their seasonal succession using the amplicon sequencing of the pufM marker gene. To enhance the accuracy of the taxonomic assignment, we developed new pufM primers that generate longer amplicons and compiled the currently largest database of pufM genes, comprising 3633 reference sequences spanning all phyla known to contain AAP species. With this novel resource, we demonstrated that the majority of the species appeared during specific phases of the seasonal cycle, with less than 2% of AAP species detected during the whole year. AAP community presented an indigenous freshwater nature characterized by high resilience and heterogenic adaptations to varying conditions of the freshwater environment. CONCLUSIONS: Our findings highlight the substantial contribution of AAP bacteria to the carbon flow and ecological dynamics of lakes and unveil a recurrent and dynamic seasonal succession of the AAP community. By integrating this information with the indicator of primary production (Chlorophyll-a) and existing ecological models, we show that AAP bacteria play a pivotal role in the recycling of dissolved organic matter released during spring phytoplankton bloom. We suggest a potential role of AAP bacteria within the context of the PEG model and their consideration in further ecological models.
- Keywords
- pufM gene, Aerobic anoxygenic phototrophs, Aquatic microbial ecology, Freshwaters, Long-term sampling, Microbial seasonal succession, PEG model, Photoheterotrophs,
- MeSH
- Bacteria, Aerobic genetics metabolism MeSH
- Bacteria genetics MeSH
- Biomass MeSH
- Phototrophic Processes * MeSH
- Phytoplankton genetics MeSH
- Lakes * microbiology MeSH
- Publication type
- Journal Article MeSH
Marine bacterioplankton represent a diverse assembly of species differing largely in their abundance, physiology, metabolic activity, and role in microbial food webs. To analyze their sensitivity to bottom-up and top-down controls, we performed a manipulation experiment where grazers were removed, with or without the addition of phosphate. Using amplicon-reads normalization by internal standard (ARNIS), we reconstructed growth curves for almost 300 individual phylotypes. Grazer removal caused a rapid growth of most bacterial groups, which grew at rates of 0.6 to 3.5 day-1, with the highest rates (>4 day-1) recorded among Rhodobacteraceae, Oceanospirillales, Alteromonadaceae, and Arcobacteraceae. Based on their growth response, the phylotypes were divided into three basic groups. Most of the phylotypes responded positively to both grazer removal as well as phosphate addition. The second group (containing, e.g., Rhodobacterales and Rhizobiales) responded to the grazer removal but not to the phosphate addition. Finally, some clades, such as SAR11 and Flavobacteriaceae, responded only to phosphate amendment but not to grazer removal. Our results show large differences in bacterial responses to experimental manipulations at the phylotype level and document different life strategies of marine bacterioplankton. In addition, growth curves of 130 phylogroups of aerobic anoxygenic phototrophs were reconstructed based on changes of the functional pufM gene. The use of functional genes together with rRNA genes may significantly expand the scientific potential of the ARNIS technique. IMPORTANCE Growth is one of the main manifestations of life. It is assumed generally that bacterial growth is constrained mostly by nutrient availability (bottom-up control) and grazing (top-down control). Since marine bacteria represent a very diverse assembly of species with different metabolic properties, their growth characteristics also largely differ accordingly. Currently, the growth of marine microorganisms is typically evaluated using microscopy in combination with fluorescence in situ hybridization (FISH). However, these laborious techniques are limited in their throughput and taxonomical resolution. Therefore, we combined a classical manipulation experiment with next-generation sequencing to resolve the growth dynamics of almost 300 bacterial phylogroups in the coastal Adriatic Sea. The analysis documented that most of the phylogroups responded positively to both grazer removal and phosphate addition. We observed significant differences in growth kinetics among closely related species, which could not be distinguished by the classical FISH technique.
- Keywords
- aerobic anoxygenic phototrophs, amplicon sequencing, bacterioplankton, grazing, growth curves, growth rate, manipulation experiment, phosphorus limitation, top-down control,
- Publication type
- Journal Article MeSH
Phytoplankton is a key component of aquatic microbial communities, and metabolic coupling between phytoplankton and bacteria determines the fate of dissolved organic carbon (DOC). Yet, the impact of primary production on bacterial activity and community composition remains largely unknown, as, for example, in the case of aerobic anoxygenic phototrophic (AAP) bacteria that utilize both phytoplankton-derived DOC and light as energy sources. Here, we studied how reduction of primary production in a natural freshwater community affects the bacterial community composition and its activity, focusing primarily on AAP bacteria. The bacterial respiration rate was the lowest when photosynthesis was reduced by direct inhibition of photosystem II and the highest in ambient light condition with no photosynthesis inhibition, suggesting that it was limited by carbon availability. However, bacterial assimilation rates of leucine and glucose were unaffected, indicating that increased bacterial growth efficiency (e.g., due to photoheterotrophy) can help to maintain overall bacterial production when low primary production limits DOC availability. Bacterial community composition was tightly linked to light intensity, mainly due to the increased relative abundance of light-dependent AAP bacteria. This notion shows that changes in bacterial community composition are not necessarily reflected by changes in bacterial production or growth and vice versa. Moreover, we demonstrated for the first time that light can directly affect bacterial community composition, a topic which has been neglected in studies of phytoplankton-bacteria interactions.IMPORTANCE Metabolic coupling between phytoplankton and bacteria determines the fate of dissolved organic carbon in aquatic environments, and yet how changes in the rate of primary production affect the bacterial activity and community composition remains understudied. Here, we experimentally limited the rate of primary production either by lowering light intensity or by adding a photosynthesis inhibitor. The induced decrease had a greater influence on bacterial respiration than on bacterial production and growth rate, especially at an optimal light intensity. This suggests that changes in primary production drive bacterial activity, but the effect on carbon flow may be mitigated by increased bacterial growth efficiencies, especially of light-dependent AAP bacteria. Bacterial activities were independent of changes in bacterial community composition, which were driven by light availability and AAP bacteria. This direct effect of light on composition of bacterial communities has not been documented previously.
- Keywords
- AAP community composition, aerobic anoxygenic phototrophic bacteria, bacterial community composition, phytoplankton-bacteria coupling,
- MeSH
- Bacteria, Aerobic growth & development metabolism MeSH
- Ecosystem * MeSH
- Photosynthesis MeSH
- Phototrophic Processes * MeSH
- Bacterial Physiological Phenomena MeSH
- Microbiota * MeSH
- Seawater microbiology MeSH
- Fresh Water microbiology MeSH
- Light MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Aerobic anoxygenic phototrophic (AAP) bacteria are a common component of freshwater microbial communities. They harvest light energy using bacteriochlorophyll a-containing reaction centers to supplement their predominantly heterotrophic metabolism. We used epifluorescence microscopy, HPLC, and infrared fluorometry to examine the dynamics of AAP bacteria in the mesotrophic lake Vlkov during the seasonal cycle. The mortality of AAP bacteria was estimated from diel changes of bacteriochlorophyll a fluorescence. The AAP abundance correlated with water temperature and DOC concentration. Its maximum was registered during late summer, when AAP bacteria made up 20% of total bacteria. The novel element of this study is the seasonal measurements of AAP mortality rates. The rates ranged between 1.15 and 4.56 per day with the maxima registered in early summer coinciding with the peak of primary production, which documents that AAP bacteria are a highly active component of freshwater microbial loop.
- MeSH
- Bacteria, Aerobic classification genetics isolation & purification radiation effects MeSH
- Biodiversity * MeSH
- Phototrophic Processes MeSH
- Lakes microbiology MeSH
- Oxygen metabolism MeSH
- Seasons MeSH
- Light MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Oxygen MeSH