Most cited article - PubMed ID 28694157
How methamphetamine exposure during different neurodevelopmental stages affects social behavior of adult rats?
BACKGROUND: Methamphetamine (MA) is a highly abused psychostimulant across all age groups including pregnant women. Because developing brain is vulnerable by the action of drugs, or other noxious stimuli, the aim of our study was to examine the effect of early postnatal administration of MA alone or in combination with enriched environment (EE) and/or stress of separate housing, on the levels of serotonin (5HT) in the hippocampus of male rat pups at three stages of adolescence (postnatal day (PND) 28, 35 and 45). MA (5 mg/kg/ml) was administered subcutaneously (sc) to pups (direct administration), or via mothers' milk between PND1 and PND12 (indirect administration). Controls were exposed saline (SA). Pups were exposed to EE and/or to separation from the weaning till the end of the experiment. RESULTS: On PND 28, in sc-treated series, EE significantly increased the muted 5HT in SA pups after separation and restored the pronounced inhibition of 5HT by MA. No beneficial effect of EE was present in pups exposed to combination of MA and separation. 5HT development declined over time; EE, MA and separation had different effects on 5HT relative to adolescence stage. CONCLUSIONS: Present study shows that MA along with environment or housing affect 5HT levels, depending on both the age and the method of application (direct or indirect). These findings extend the knowledge on the effects of MA alone and in combination with different housing conditions on the developing brain and highlight the increased sensitivity to MA during the first few months after birth.
- Keywords
- Adolescence, Enriched environment, Hippocampus, Methamphetamine, Serotonin,
- Publication type
- Journal Article MeSH
Neurotrophins are proteins included in development and functioning of various processed in mammalian organisms. They are important in early development but as well as during adulthood. Brain - derived neurotrophic factor (BDNF) and nerve growth factor (NGF) have been previously linked with many psychiatric disorders such as depression and addiction. Since during postnatal development, brain undergoes various functional and anatomical changes, we included preweaning environment enrichment (EE), since enrichment has been linked with improved function and development of the several brain structure such as hippocampus (HP), in which we monitored these changes. On the other hand, social isolation has been linked with depression and anxiety-like behavior, therefore postweaning social isolation has been added to this model as well and animal were exposed to this condition till adolescence. We examined if all these three factors had impact on BDNF and NGF levels during three phases of adolescence - postnatal days (PDs) 28, 35 and 45. Our results show that EE did not increase BDNF levels neither in control or MA exposed animals and these results are similar for both direct and indirect exposure. On the other side, social separation after weaning did reduce BDNF levels in comparison to standard housing animals but this effect was reversed by direct MA exposure. In terms of NGF, EE environment increased its levels only in indirectly exposed controls and MA animals during late adolescence. On the other hand, social separation increased NGF levels in majority of animals.
- MeSH
- Hippocampus MeSH
- Rats MeSH
- Methamphetamine * pharmacology MeSH
- Brain metabolism MeSH
- Brain-Derived Neurotrophic Factor * metabolism MeSH
- Nerve Growth Factor metabolism MeSH
- Prenatal Exposure Delayed Effects * MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Methamphetamine * MeSH
- Brain-Derived Neurotrophic Factor * MeSH
- Nerve Growth Factor MeSH
Drug addiction and its effect on the behavior and development of children has become a serious problem in our society. Methamphetamine (MA) is one of the most abused psychostimulants in the Czech Republic, and its abuse is rising worldwide. Previous studies have demonstrated the adverse long-term effects of maternal drug abuse on rat offspring. However, the father's contribution as a parent and donor of half of the genetic information is unclear. Previous studies of other psychostimulant drugs indicate that long-term application of MA to adult male rats may induce changes in their reproductive system and lead to changes in rat pup functional and behavioral development. Therefore, the present review aimed to investigate the effect of MA administration on reproductive toxicity and sexual behavior of adult male rats, as well as the impact of paternal MA exposure on behavioral development and locomotor activity in rat offspring.
- MeSH
- Behavior, Animal MeSH
- Child MeSH
- Adult MeSH
- Rats MeSH
- Humans MeSH
- Methamphetamine * adverse effects MeSH
- Genitalia MeSH
- Rats, Wistar MeSH
- Sexual Behavior MeSH
- Central Nervous System Stimulants * pharmacology MeSH
- Prenatal Exposure Delayed Effects * chemically induced MeSH
- Animals MeSH
- Check Tag
- Child MeSH
- Adult MeSH
- Rats MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Methamphetamine * MeSH
- Central Nervous System Stimulants * MeSH
The present study was aimed at evaluating cognitive changes following neonatal methamphetamine exposure in combination with repeated treatment in adulthood of female Wistar rats. Pregnant dams and their pups were used in this study. One half of the offspring were treated indirectly via the breast milk of injected mothers, and the other half of pups were treated directly by methamphetamine injection. In the group with indirect exposure, mothers received methamphetamine (5 mg/ml/kg) or saline (1 ml/kg) between postnatal days (PD) 1-11. In the group with direct exposure, none of the mothers were treated. Instead, progeny were either: (1) treated with injected methamphetamine (5 mg/ml/kg); or (2) served as controls and received sham injections (no saline, just a needle stick) on PD 1-11. Learning ability and memory consolidation were tested on PD 70-90 in the Morris Water Maze (MWM) using three tests: Place Navigation Test, Probe Test, and Memory Recall Test. Adult female progeny were injected daily, after completion of the last trial of MWM tests, with saline or methamphetamine (1 mg/ml/kg). The effects of indirect/direct neonatal methamphetamine exposure combined with acute adult methamphetamine treatment on cognitive functions in female rats were compared. Statistical analyses showed that neonatal drug exposure worsened spatial learning and the ability to remember the position of a hidden platform. The study also demonstrated that direct methamphetamine exposure has a more significant impact on learning and memory than indirect exposure. The acute dose of the drug did not produce any changes in cognitive ability. Analyses of search strategies (thigmotaxis, scanning) used by females during the Place Navigation Test and Memory Recall Test confirmed all these results. Results from the present study suggested extensive deficits in learning skills and memory of female rats that may be linked to the negative impact of neonatal methamphetamine exposure.
- Keywords
- Morris Water Maze (MWM), Wistar rat, methamphetamine, neonatal exposure, strategies,
- Publication type
- Journal Article MeSH
Methamphetamine (MA), a psychostimulant, has become a serious problem in recent years. It is one of the most widely abused psychostimulants in the world. In the Czech Republic, ecstasy is the most commonly used non-cannabis drug, followed by hallucinogenic fungi, LSD, MA, cocaine, and finally heroin. The prevalence of the usage of all addictive substances is highest in the age category of 15-34. Approximately 17.2% of registered drug addicts, both male and female, in the Czech Republic use MA as their first-choice drug. This group consists mostly of women who are unemployed and addicted to MA (85%). Almost half of the addicted women switched to MA from other drugs in the course of pregnancy. Psychostimulants such as amphetamine and its synthetic derivate MA induce feelings of calm and happiness by suppressing anxiety and depression. When MA is abused for longer periods, it mimics symptoms of mania and can lead to the development of psychosis. MA is often abused for its anorectic effect, its simple preparation, and compared to heroin and cocaine, its low price. There are significant differences in the susceptibility of users to the stimulant, with reactions to MA fluctuating from person to person. Molecular mechanisms related to the variable response among users might represent an explanation for increased addiction-associated bipolar disorder and psychosis. Currently, there is limited information regarding genetic mechanisms linked to these disorders and the transmission of drug addiction. As such, animal models of drug addiction represent significant sources of information and assets in the research of these issues. The aim of this review is to summarize the mechanism of action of methamphetamine and its effect on pregnant addicted women and their children, including a detailed description of the anatomical structures involved.
- Keywords
- dopamine, drug addiction, hippocampus, methamphetamine, prefrontal cortex, prenatal, serotonin, striatum,
- Publication type
- Journal Article MeSH
- Review MeSH
Methamphetamine (MA), as a psychostimulant drug that crosses the placental barrier, may disrupt the development of social play. The present study aims to examine the effect of prenatal MA (5 mg/kg) exposure during the first (gestational day (GD) 1-11) or second (GD 12-22) halves of prenatal development of rats on social play behavior. To investigate an acute effect of MA on social play in adulthood, juvenile rats were exposed to a dose of 1 mg/kg MA or saline on the test day and tested for social play for 15 min. Prenatal exposure to MA during GD 1-11 increased social play behavior during 5-10 min interval of the test in males but not females. Prenatal MA during GD 12-22 did not influence social play in males nor females. However, social play occurred to a greater extent in GD 12-22 groups compared with GD 1-11. Acute exposure to MA eliminated playful behavior in all groups and decreased social exploration in GD 1-11. Our results suggest that manipulation of prenatal development during the first half of the gestational period has a greater impact on social play behavior than during the second half.
- MeSH
- Gestational Age MeSH
- Play and Playthings psychology MeSH
- Rats MeSH
- Methamphetamine toxicity MeSH
- Animals, Newborn MeSH
- Rats, Wistar MeSH
- Social Behavior * MeSH
- Central Nervous System Stimulants toxicity MeSH
- Pregnancy MeSH
- Prenatal Exposure Delayed Effects chemically induced psychology MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Pregnancy MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Methamphetamine MeSH
- Central Nervous System Stimulants MeSH
Methamphetamine (METH) is a widespread illicit drug. If it is taken by pregnant women, it passes through the placenta and just as it affects the mother, it can impair the development of the offspring. The aim of our study was to identify candidates to investigate for changes in the gene expression in the specific regions of the brain associated with addiction to METH in rats. We examined the various areas of the central nervous system (striatum, hippocampus, prefrontal cortex) for signs of impairment in postnatal day 80 in experimental rats, whose mothers had been administered METH (5 mg/kg/day) during the entire gestation period. Changes in the gene expression at the mRNA level were determined by two techniques, microarray and real-time PCR. Results of two microarray trials were evaluated by LIMMA analysis. The first microarray trial detected either up-regulated or down-regulated expression of 2189 genes in the striatum; the second microarray trial detected either up-regulated or down-regulated expression of 1344 genes in the hippocampus of prenatally METH-exposed rats. We examined the expression of 10 genes using the real-time PCR technique. Differences in the gene expression were counted by the Mann-Whitney U-test. Significant changes were observed in the cocaine- and amphetamine-regulated transcript prepropeptide, tachykinin receptor 3, dopamine receptor D3 gene expression in the striatum regions, in the glucocorticoid nuclear receptor Nr3c1 gene expression in the prefrontal cortex and in the carboxylesterase 2 gene expression in the hippocampus of prenatally METH-exposed rats. The microarray technique also detected up-regulated expression of trace amine-associated receptor 7 h gene in the hippocampus of prenatally METH-exposed rats. We have identified susceptible genes; candidates for the study of an impairment related to methamphetamine addiction in the specific regions of the brain.
- Keywords
- hippocampus, methamphetamine, microarray, prefrontal cortex, prenatal, real-time PCR, receptor, striatum,
- Publication type
- Journal Article MeSH