Nejvíce citovaný článek - PubMed ID 15633162
Methamphetamine administration during gestation impairs maternal behavior
Methamphetamine (MA) is one of the most abused psychostimulants in the Czech Republic and worldwide. Previous studies have demonstrated the adverse effects of maternal drug abuse. However, the father's contribution as a parent and donor of the half genetic information is unclear. The present study aimed to examine the effect of paternal MA exposure on behavioral development and locomotor activity in rat offspring. MA was administrated subcutaneously for 30 days at a dose of 5 mg/kg to adult male rats. The impact of paternal MA exposure on rat pups was investigated using behavioral tests during development and locomotor activity tests in adulthood. Prior to testing, adult offspring were exposed to an acute challenge dose of MA (1 mg/kg) to examine the possible sensitizing effect of the paternal treatment. Our results found no significant differences in behavioral development or locomotor activity in adulthood of offspring linked to paternal MA application. These results differ from the effects induced by maternal MA application. Further, our results demonstrated a significant increase in locomotor activity on the Laboras test after acute MA application. When comparing sex differences, females showed more activity than males in adulthood, whereas males were more active during development.
- MeSH
- chování zvířat účinky léků MeSH
- krysa rodu Rattus MeSH
- lokomoce účinky léků MeSH
- methamfetamin toxicita MeSH
- metoda rotující tyčky MeSH
- otec - expozice noxám * MeSH
- pohlavní dimorfismus MeSH
- polohový reflex účinky léků MeSH
- potkani Wistar MeSH
- senzorimotorický kortex účinky léků růst a vývoj MeSH
- sexuální faktory MeSH
- stimulanty centrálního nervového systému toxicita MeSH
- věkové faktory MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- methamfetamin MeSH
- stimulanty centrálního nervového systému MeSH
The present study was aimed at evaluating cognitive changes following neonatal methamphetamine exposure in combination with repeated treatment in adulthood of female Wistar rats. Pregnant dams and their pups were used in this study. One half of the offspring were treated indirectly via the breast milk of injected mothers, and the other half of pups were treated directly by methamphetamine injection. In the group with indirect exposure, mothers received methamphetamine (5 mg/ml/kg) or saline (1 ml/kg) between postnatal days (PD) 1-11. In the group with direct exposure, none of the mothers were treated. Instead, progeny were either: (1) treated with injected methamphetamine (5 mg/ml/kg); or (2) served as controls and received sham injections (no saline, just a needle stick) on PD 1-11. Learning ability and memory consolidation were tested on PD 70-90 in the Morris Water Maze (MWM) using three tests: Place Navigation Test, Probe Test, and Memory Recall Test. Adult female progeny were injected daily, after completion of the last trial of MWM tests, with saline or methamphetamine (1 mg/ml/kg). The effects of indirect/direct neonatal methamphetamine exposure combined with acute adult methamphetamine treatment on cognitive functions in female rats were compared. Statistical analyses showed that neonatal drug exposure worsened spatial learning and the ability to remember the position of a hidden platform. The study also demonstrated that direct methamphetamine exposure has a more significant impact on learning and memory than indirect exposure. The acute dose of the drug did not produce any changes in cognitive ability. Analyses of search strategies (thigmotaxis, scanning) used by females during the Place Navigation Test and Memory Recall Test confirmed all these results. Results from the present study suggested extensive deficits in learning skills and memory of female rats that may be linked to the negative impact of neonatal methamphetamine exposure.
- Klíčová slova
- Morris Water Maze (MWM), Wistar rat, methamphetamine, neonatal exposure, strategies,
- Publikační typ
- časopisecké články MeSH
Methamphetamine (MA), a psychostimulant, has become a serious problem in recent years. It is one of the most widely abused psychostimulants in the world. In the Czech Republic, ecstasy is the most commonly used non-cannabis drug, followed by hallucinogenic fungi, LSD, MA, cocaine, and finally heroin. The prevalence of the usage of all addictive substances is highest in the age category of 15-34. Approximately 17.2% of registered drug addicts, both male and female, in the Czech Republic use MA as their first-choice drug. This group consists mostly of women who are unemployed and addicted to MA (85%). Almost half of the addicted women switched to MA from other drugs in the course of pregnancy. Psychostimulants such as amphetamine and its synthetic derivate MA induce feelings of calm and happiness by suppressing anxiety and depression. When MA is abused for longer periods, it mimics symptoms of mania and can lead to the development of psychosis. MA is often abused for its anorectic effect, its simple preparation, and compared to heroin and cocaine, its low price. There are significant differences in the susceptibility of users to the stimulant, with reactions to MA fluctuating from person to person. Molecular mechanisms related to the variable response among users might represent an explanation for increased addiction-associated bipolar disorder and psychosis. Currently, there is limited information regarding genetic mechanisms linked to these disorders and the transmission of drug addiction. As such, animal models of drug addiction represent significant sources of information and assets in the research of these issues. The aim of this review is to summarize the mechanism of action of methamphetamine and its effect on pregnant addicted women and their children, including a detailed description of the anatomical structures involved.
- Klíčová slova
- dopamine, drug addiction, hippocampus, methamphetamine, prefrontal cortex, prenatal, serotonin, striatum,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Methamphetamine (METH) is a widespread illicit drug. If it is taken by pregnant women, it passes through the placenta and just as it affects the mother, it can impair the development of the offspring. The aim of our study was to identify candidates to investigate for changes in the gene expression in the specific regions of the brain associated with addiction to METH in rats. We examined the various areas of the central nervous system (striatum, hippocampus, prefrontal cortex) for signs of impairment in postnatal day 80 in experimental rats, whose mothers had been administered METH (5 mg/kg/day) during the entire gestation period. Changes in the gene expression at the mRNA level were determined by two techniques, microarray and real-time PCR. Results of two microarray trials were evaluated by LIMMA analysis. The first microarray trial detected either up-regulated or down-regulated expression of 2189 genes in the striatum; the second microarray trial detected either up-regulated or down-regulated expression of 1344 genes in the hippocampus of prenatally METH-exposed rats. We examined the expression of 10 genes using the real-time PCR technique. Differences in the gene expression were counted by the Mann-Whitney U-test. Significant changes were observed in the cocaine- and amphetamine-regulated transcript prepropeptide, tachykinin receptor 3, dopamine receptor D3 gene expression in the striatum regions, in the glucocorticoid nuclear receptor Nr3c1 gene expression in the prefrontal cortex and in the carboxylesterase 2 gene expression in the hippocampus of prenatally METH-exposed rats. The microarray technique also detected up-regulated expression of trace amine-associated receptor 7 h gene in the hippocampus of prenatally METH-exposed rats. We have identified susceptible genes; candidates for the study of an impairment related to methamphetamine addiction in the specific regions of the brain.
- Klíčová slova
- hippocampus, methamphetamine, microarray, prefrontal cortex, prenatal, real-time PCR, receptor, striatum,
- Publikační typ
- časopisecké články MeSH
Methamphetamine (MA) is the most abused "hard" illicit drug in the Czech Republic. Drugs abused during pregnancy are not hazardous merely to the mother, but also to developing fetuses. The offspring of drug-addicted mothers are also often exposed to perinatal stressors that may impair brain development of affected progeny. The present study examines the effect of perinatal stressors and drug exposure on cognitive function in male progeny. In the present study, rat mothers were divided into three groups according to drug treatment during pregnancy: controls (C); saline (SA, s.c., 1 ml/kg); MA (s.c., 5 mg/ml/kg). Litters were divided into two groups according to postnatal stressors: non-stressed controls (N); Maternal separation (MS). For evaluation of learning and memory, adult male progeny were tested in the Morris Water Maze (MWM). Our results revealed no significant effects caused by prenatal drug or prenatal stress exposure. On the other hand, chronic postnatal stress, mediated by MS, significantly impaired learning on the Place Navigation test. In addition, MS was associated with changes in search strategies on the Place Navigation, Probe, and Memory Recall tests. Specifically, postnatal stress increased thigmotaxis, indicating less awareness of the hidden platform. In conclusion, the present study provides evidence that exposure to early postnatal stress significantly impairs cognitive functions of male rats, which persists into adulthood.
- Klíčová slova
- learning, maternal separation, memory, methamphetamine, postnatal stress, prenatal stress,
- Publikační typ
- časopisecké články MeSH
There is accumulating evidence that methamphetamine (MA) is a widely abused drug popular among pregnant women. MA exposure is associated with changes in the function of neurotransmitter systems, namely the dopaminergic, serotonergic and glutamatergic systems. Since N-methyl-D-aspartate receptors (NMDA) are affected by MA-induced glutamate release, we assessed the expression of NMDAR subunits (NR1, NR2A, and NR2B) and postsynaptic density protein 95 (PSD-95), which is connected with NMDAR. We measured the expression of these proteins in adolescent (30 days old) and adult (60 days old) rat males exposed to MA during the entire prenatal period and compared them with the same parameters in age matched saline-exposed rats. There was a significant increase in the NR1 and NR2B subunits in the hippocampus of adult males, but not in adolescent males. We identified a significant change in adult MA-induced rats when compared to adult controls for NR2A and NR2B, while in adolescent MA rats this change was close to the boundary of significance. In summary, our study suggests that prenatal MA exposure is connected with changes in NMDAR subunit expression in adult rats but not in adolescent rats.
- MeSH
- hipokampus účinky léků metabolismus MeSH
- methamfetamin toxicita MeSH
- novorozená zvířata MeSH
- podjednotky proteinů metabolismus MeSH
- potkani Sprague-Dawley MeSH
- receptory N-methyl-D-aspartátu metabolismus MeSH
- signální transdukce účinky léků MeSH
- stárnutí MeSH
- těhotenství MeSH
- zpožděný efekt prenatální expozice metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- methamfetamin MeSH
- podjednotky proteinů MeSH
- receptory N-methyl-D-aspartátu MeSH
The aim of our study was to reveal whether acute methamphetamine (MA) administration changes the sensitivity to seizures induced by N-methyl-D-aspartate (NMDA) in prenatally MA-exposed adult rats. Adult rats with respect to sex and female estrous cycle (prenatally MA-exposed, prenatally saline-exposed, and controls) were divided into groups with acute MA (1 mg/kg) or without acute drug administration (saline injection). Intraperitoneal administration of 250 mg/kg of NMDA was used as a seizure model. The present study demonstrated that both prenatal MA and prenatal saline exposure decreased the latency to onset of stereotypy and clonic-tonic seizures. Acute MA administration decreased latency to onset of stereotypic behavior in all groups, while increased latency to onset of clonic-tonic seizures in prenatally saline-exposed rats. The duration of NMDA seizures was longer after acute MA administration relative to animals without acute MA pretreatment in both control groups. In addition, males displayed decreased susceptibility to NMDA-induced seizures relative to females regardless of their estrous cycle. Our study suggests that acute MA exposure changes susceptibility to NMDA-induced seizures in respect of prenatal exposure and sex. However, it seems that the effect of prenatal exposure is not induced by the drug per se but rather by the repeated injection exposure that causes prenatal stress.
- MeSH
- agonisté excitačních aminokyselin aplikace a dávkování toxicita MeSH
- časové faktory MeSH
- estrální cyklus fyziologie MeSH
- krysa rodu Rattus MeSH
- methamfetamin farmakologie MeSH
- N-methylaspartát aplikace a dávkování toxicita MeSH
- potkani Wistar MeSH
- rozvrh dávkování léků MeSH
- sexuální faktory MeSH
- stereotypní chování účinky léků MeSH
- stimulanty centrálního nervového systému farmakologie MeSH
- těhotenství MeSH
- záchvaty chemicky indukované MeSH
- zpožděný efekt prenatální expozice MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- agonisté excitačních aminokyselin MeSH
- methamfetamin MeSH
- N-methylaspartát MeSH
- stimulanty centrálního nervového systému MeSH
Stimulant drugs are often associated with increased seizure susceptibility. Inhibitory gamma-aminobutyric acid (GABA) and excitatory N-methyl-D-aspartate (NMDA) systems play an important role in the effect of stimulants on epileptic seizures. No studies investigating the effect of prenatal methamphetamine (MA) exposure on seizures are available. In this study, bicuculline (GABAA receptor antagonist), NMDA (NMDA receptor agonist) and kainic acid (non-NMDA receptor agonist) were used to induce seizures in adult male rats. Three groups of animals were tested in each seizure test: prenatally MA- (5 mg/kg) exposed, prenatally saline-exposed, and absolute controls without any prenatal exposure. In bicuculline-induced seizures, the latency to onset of tonic-clonic seizures was shorter in MA-exposed rats than in controls, but it did not differ from saline-exposed rats. There were no differences in clonic seizure onset between groups. In NMDA-induced seizures, the latency to onset of clonic-tonic seizures was shorter in prenatally MA-exposed rats than in controls; however, the latency to onset of saline-exposed animals did not differ from either MA-exposed or from control rats. There were no differences in seizure susceptibility in kainic acid-induced clonic seizures. There were no differences in seizure incidences or stereotypical behavior in any seizure model. The question remains as to how much the present data demonstrate the effect of prenatal drug exposure on seizure susceptibility per se, and how much they may be explained by the effect of prenatal stress or by other mechanism(s).
- MeSH
- agonisté excitačních aminokyselin toxicita MeSH
- bikukulin antagonisté a inhibitory toxicita MeSH
- GABA antagonisté toxicita MeSH
- krysa rodu Rattus MeSH
- kyselina kainová antagonisté a inhibitory toxicita MeSH
- methamfetamin terapeutické užití MeSH
- N-methylaspartát antagonisté a inhibitory toxicita MeSH
- potkani Wistar MeSH
- stimulanty centrálního nervového systému terapeutické užití MeSH
- těhotenství MeSH
- záchvaty chemicky indukované prevence a kontrola MeSH
- zpožděný efekt prenatální expozice MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- agonisté excitačních aminokyselin MeSH
- bikukulin MeSH
- GABA antagonisté MeSH
- kyselina kainová MeSH
- methamfetamin MeSH
- N-methylaspartát MeSH
- stimulanty centrálního nervového systému MeSH