Nejvíce citovaný článek - PubMed ID 28802037
Prominin-1 (CD133) is a cholesterol-binding membrane glycoprotein selectively associated with highly curved and prominent membrane structures. It is widely recognized as an antigenic marker of stem cells and cancer stem cells and is frequently used to isolate them from biological and clinical samples. Recent progress in understanding various aspects of CD133 biology in different cell types has revealed the involvement of CD133 in the architecture and dynamics of plasma membrane protrusions, such as microvilli and cilia, including the release of extracellular vesicles, as well as in various signaling pathways, which may be regulated in part by posttranslational modifications of CD133 and its interactions with a variety of proteins and lipids. Hence, CD133 appears to be a master regulator of cell signaling as its engagement in PI3K/Akt, Src-FAK, Wnt/β-catenin, TGF-β/Smad and MAPK/ERK pathways may explain its broad action in many cellular processes, including cell proliferation, differentiation, and migration or intercellular communication. Here, we summarize early studies on CD133, as they are essential to grasp its novel features, and describe recent evidence demonstrating that this unique molecule is involved in membrane dynamics and molecular signaling that affects various facets of tissue homeostasis and cancer development. We hope this review will provide an informative resource for future efforts to elucidate the details of CD133's molecular function in health and disease.
- Klíčová slova
- CD133, Cancer, Cancer stem cell, Cell signaling, Cilium, Exosome, Lipid raft, Microvillus, Prominin-1, Stem cell,
- MeSH
- antigen AC133 metabolismus MeSH
- buněčná membrána metabolismus MeSH
- fosfatidylinositol-3-kinasy * metabolismus MeSH
- nádorové kmenové buňky metabolismus MeSH
- signální transdukce * MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antigen AC133 MeSH
- fosfatidylinositol-3-kinasy * MeSH
Phosphoinositide 3-kinases (PI3K) and phosphoinositide 3-kinase-related protein kinases (PIKK) are two structurally related families of kinases that play vital roles in cell growth and DNA damage repair. Dysfunction of PIKK members and aberrant stimulation of the PI3K/AKT/mTOR signalling pathway are linked to a plethora of diseases including cancer. In recent decades, numerous inhibitors related to the PI3K/AKT/mTOR signalling have made great strides in cancer treatment, like copanlisib and sirolimus. Notably, most of the PIKK inhibitors (such as VX-970 and M3814) related to DNA damage response have also shown good efficacy in clinical trials. However, these drugs still require a suitable combination therapy to overcome drug resistance or improve antitumor activity. Based on the aforementioned facts, we summarised the efficacy of PIKK, PI3K, and AKT inhibitors in the therapy of human malignancies and the resistance mechanisms of targeted therapy, in order to provide deeper insights into cancer treatment.
- Klíčová slova
- AKT, PI3K, PIKK, anticancer therapy, inhibitors,
- MeSH
- 1-fosfatidylinositol-3-kinasa * metabolismus terapeutické užití MeSH
- fosfatidylinositol-3-kinasy metabolismus MeSH
- inhibitory fosfoinositid-3-kinasy farmakologie MeSH
- inhibitory proteinkinas farmakologie terapeutické užití MeSH
- lidé MeSH
- nádory * farmakoterapie MeSH
- protoonkogenní proteiny c-akt metabolismus MeSH
- TOR serin-threoninkinasy metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- 1-fosfatidylinositol-3-kinasa * MeSH
- fosfatidylinositol-3-kinasy MeSH
- inhibitory fosfoinositid-3-kinasy MeSH
- inhibitory proteinkinas MeSH
- protoonkogenní proteiny c-akt MeSH
- TOR serin-threoninkinasy MeSH
Anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitors (TKIs) show potent efficacy in several ALK-driven tumors, but the development of resistance limits their long-term clinical impact. Although resistance mechanisms have been studied extensively in ALK-driven non-small cell lung cancer, they are poorly understood in ALK-driven anaplastic large cell lymphoma (ALCL). Here, we identify a survival pathway supported by the tumor microenvironment that activates phosphatidylinositol 3-kinase γ (PI3K-γ) signaling through the C-C motif chemokine receptor 7 (CCR7). We found increased PI3K signaling in patients and ALCL cell lines resistant to ALK TKIs. PI3Kγ expression was predictive of a lack of response to ALK TKI in patients with ALCL. Expression of CCR7, PI3Kγ, and PI3Kδ were up-regulated during ALK or STAT3 inhibition or degradation and a constitutively active PI3Kγ isoform cooperated with oncogenic ALK to accelerate lymphomagenesis in mice. In a three-dimensional microfluidic chip, endothelial cells that produce the CCR7 ligands CCL19/CCL21 protected ALCL cells from apoptosis induced by crizotinib. The PI3Kγ/δ inhibitor duvelisib potentiated crizotinib activity against ALCL lines and patient-derived xenografts. Furthermore, genetic deletion of CCR7 blocked the central nervous system dissemination and perivascular growth of ALCL in mice treated with crizotinib. Thus, blockade of PI3Kγ or CCR7 signaling together with ALK TKI treatment reduces primary resistance and the survival of persister lymphoma cells in ALCL.
- MeSH
- anaplastická lymfomová kináza MeSH
- anaplastický velkobuněčný lymfom * farmakoterapie genetika patologie MeSH
- endoteliální buňky metabolismus MeSH
- fosfatidylinositol-3-kinasy MeSH
- inhibitory proteinkinas farmakologie terapeutické užití MeSH
- inhibitory tyrosinkinasy MeSH
- krizotinib farmakologie terapeutické užití MeSH
- lidé MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádorové mikroprostředí MeSH
- nádory plic * farmakoterapie MeSH
- nemalobuněčný karcinom plic * farmakoterapie MeSH
- receptory CCR7 genetika MeSH
- tyrosinkinasové receptory metabolismus MeSH
- tyrosinkinasy MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- anaplastická lymfomová kináza MeSH
- CCR7 protein, human MeSH Prohlížeč
- fosfatidylinositol-3-kinasy MeSH
- inhibitory proteinkinas MeSH
- inhibitory tyrosinkinasy MeSH
- krizotinib MeSH
- receptory CCR7 MeSH
- tyrosinkinasové receptory MeSH
- tyrosinkinasy MeSH
Diffuse large B-cell lymphoma (DLBCL) is an aggressive disease that exhibits constitutive activation of phosphoinositide 3-kinase (PI3K) driven by chronic B-cell receptor signaling or PTEN deficiency. Since pan-PI3K inhibitors cause severe side effects, we investigated the anti-lymphoma efficacy of the specific PI3Kβ/δ inhibitor AZD8186. We identified a subset of DLBCL models within activated B-cell-like (ABC) and germinal center B-cell-like (GCB) DLBCL that were sensitive to AZD8186 treatment. On the molecular level, PI3Kβ/δ inhibition decreased the pro-survival NF-κB and AP-1 activity or led to downregulation of the oncogenic transcription factor MYC. In AZD8186-resistant models, we detected a feedback activation of the PI3K/AKT/mTOR pathway following PI3Kβ/δ inhibition, which limited AZD8186 efficacy. The combined treatment with AZD8186 and the mTOR inhibitor AZD2014 overcame resistance to PI3Kβ/δ inhibition and completely prevented outgrowth of lymphoma cells in vivo in cell line- and patient-derived xenograft mouse models. Collectively, our study reveals that subsets of DLBCLs are addicted to PI3Kβ/δ signaling and thus identifies a previously unappreciated role of the PI3Kβ isoform in DLBCL survival. Furthermore, our data demonstrate that combined targeting of PI3Kβ/δ and mTOR is effective in all major DLBCL subtypes supporting the evaluation of this strategy in a clinical trial setting.
- MeSH
- difúzní velkobuněčný B-lymfom * patologie MeSH
- fosfatidylinositol-3-kinasy * metabolismus MeSH
- lidé MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- signální transdukce MeSH
- TOR serin-threoninkinasy metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- AZD8186 MeSH Prohlížeč
- fosfatidylinositol-3-kinasy * MeSH
- MTOR protein, human MeSH Prohlížeč
- TOR serin-threoninkinasy MeSH
Alpelisib is an α-selective phosphatidylinositol 3-kinase inhibitor used for treating hormone receptor-positive (HR+), human epidermal growth receptor 2-negative (HER2-), PIK3CA-mutated locally advanced or metastatic breast cancer following disease progression on or after endocrine therapy. Hyperglycemia is an on-target effect of alpelisib affecting approximately 60% of treated patients, and sometimes necessitating dose reductions, treatment interruptions, or discontinuation of alpelisib. Early detection of hyperglycemia and timely intervention have a key role in achieving optimal glycemic control and maintaining alpelisib dose intensity to optimize the benefit of this drug. A glycemic support program implemented by an endocrinology-oncology collaborative team may be very useful in this regard. Lifestyle modifications, mainly comprising a reduced-carbohydrate diet, and a designated stepwise, personalized antihyperglycemic regimen, based on metformin, sodium-glucose co-transporter 2 inhibitors, and pioglitazone, are the main tools required to address the insulin-resistant hyperglycemia induced by alpelisib. In this report, based on the consensus of 14 oncologists and seven endocrinologists, we provide guidance for hyperglycemia management strategies before, during, and after alpelisib therapy for HR+, HER2-, PIK3CA-mutated breast cancer, with a focus on a proactive, multidisciplinary approach.
- Klíčová slova
- PIK3CA-mutated metastatic breast cancer, adverse effect, alpelisib, hyperglycemia,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Childhood T-cell acute lymphoblastic leukemia (T-ALL) still remains a therapeutic challenge due to relapses which are resistant to further treatment. L-asparaginase (ASNase) is a key therapy component in pediatric T-ALL and lower sensitivity of leukemia cells to this drug negatively influences overall treatment efficacy and outcome. PTEN protein deletion and/or activation of the PI3K/Akt signaling pathway leading to altered cell growth and metabolism are emerging as a common feature in T-ALL. We herein investigated the relationship amongst PTEN deletion, ASNase sensitivity and glucose metabolism in T-ALL cells. First, we found significant differences in the sensitivity to ASNase amongst T-ALL cell lines. While cell lines more sensitive to ASNase were PTEN wild type (WT) and had no detectable level of phosphorylated Akt (P-Akt), cell lines less sensitive to ASNase were PTEN-null with high P-Akt levels. Pharmacological inhibition of Akt in the PTEN-null cells rendered them more sensitive to ASNase and lowered their glycolytic function which then resembled PTEN WT cells. In primary T-ALL cells, although P-Akt level was not dependent exclusively on PTEN expression, their sensitivity to ASNase could also be increased by pharmacological inhibition of Akt. In summary, we highlight a promising therapeutic option for T-ALL patients with aberrant PTEN/PI3K/Akt signaling.
- MeSH
- asparaginasa * farmakologie terapeutické užití MeSH
- dítě MeSH
- fosfatidylinositol-3-kinasy * genetika metabolismus MeSH
- fosfohydroláza PTEN * genetika metabolismus MeSH
- lidé MeSH
- lymfoblastická leukemie-lymfom z prekurzorových T-buněk * farmakoterapie genetika metabolismus MeSH
- protoonkogenní proteiny c-akt metabolismus MeSH
- signální transdukce MeSH
- T-lymfocyty metabolismus MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- asparaginasa * MeSH
- fosfohydroláza PTEN * MeSH
- protoonkogenní proteiny c-akt MeSH
- PTEN protein, human MeSH Prohlížeč
Cancer is the second leading cause of death globally. One of the main hallmarks in cancer is the functional deregulation of crucial molecular pathways via driver genetic events that lead to abnormal gene expression, giving cells a selective growth advantage. Driver events are defined as mutations, fusions and copy number alterations that are causally implicated in oncogenesis. Molecular analysis on tissues that have originated from a wide range of anatomical areas has shown that mutations in different members of several pathways are implicated in different cancer types. In recent decades, significant efforts have been made to incorporate this knowledge into daily medical practice, providing substantial insight towards clinical diagnosis and personalized therapies. However, since there is still a strong need for more effective drug development, a deep understanding of the involved signaling mechanisms and the interconnections between these pathways is highly anticipated. Here, we perform a systemic analysis on cancer patients included in the Pan-Cancer Atlas project, with the aim to select the ten most highly mutated signaling pathways (p53, RTK-RAS, lipids metabolism, PI-3-Kinase/Akt, ubiquitination, b-catenin/Wnt, Notch, cell cycle, homology directed repair (HDR) and splicing) and to provide a detailed description of each pathway, along with the corresponding therapeutic applications currently being developed or applied. The ultimate scope is to review the current knowledge on highly mutated pathways and to address the attractive perspectives arising from ongoing experimental studies for the clinical implementation of personalized medicine.
- Klíčová slova
- NGS, cancer patients, clinical implementation, molecular oncology, mutations, precision medicine, tumor,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The discrete activation of individual caspases is essential during T-cell development, activation, and apoptosis. Humans carrying nonfunctional caspase-8 and caspase-8 conditional knockout mice exhibit several defects in the progression of naive CD4⁺ T cells to the effector stage. MST1, a key kinase of the Hippo signaling pathway, is often presented as a substrate of caspases, and its cleavage by caspases potentiates its activity. Several studies have focused on the involvement of MST1 in caspase activation and also reported several defects in the immune system function caused by MST1 deficiency. Here, we show the rapid activation of the MEK-ERK-MST1 axis together with the cleavage and activation of caspase-3, -6, -7, -8, and -9 after PI3K signaling blockade by the selective inhibitor GDC-0941 in Jurkat T cells. We determined the phosphorylation pattern of MST1 using a phosphoproteomic approach and identified two amino acid residues phosphorylated in an ERK-dependent manner after GDC-0941 treatment together with a novel phosphorylation site at S21 residue, which was extensively phosphorylated in an ERK-independent manner during PI3K signaling blockade. Using caspase inhibitors and the inhibition of MST1 expression using siRNA, we identified an exclusive role of the MEK-ERK-MST1 axis in the activation of initiator caspase-8, which in turn activates executive caspase-3/-7 that finally potentiate MST1 proteolytic cleavage. This mechanism forms a positive feed-back loop that amplifies the activation of MST1 together with apoptotic response in Jurkat T cells during PI3K inhibition. Altogether, we propose a novel MEK-ERK-MST1-CASP8-CASP3/7 apoptotic pathway in Jurkat T cells and believe that the regulation of this pathway can open novel possibilities in systemic and cancer therapies.
- Klíčová slova
- AKT, ERK, Hippo/MST1, MEK, PI3K, apoptosis, caspase,
- MeSH
- aktivace enzymů účinky léků MeSH
- apoptóza účinky léků MeSH
- biologické modely MeSH
- down regulace účinky léků MeSH
- fosfatidylinositol-3-kinasy metabolismus MeSH
- fosforylace účinky léků MeSH
- fosfothreonin metabolismus MeSH
- hepatocytární růstový faktor chemie metabolismus MeSH
- indazoly farmakologie MeSH
- inhibitory fosfoinositid-3-kinasy MeSH
- inhibitory kaspas farmakologie MeSH
- Jurkat buňky MeSH
- kaspasy metabolismus MeSH
- lidé MeSH
- MAP kinasový signální systém účinky léků MeSH
- mitogenem aktivované proteinkinasy kinas metabolismus MeSH
- piperaziny farmakologie MeSH
- proteolýza účinky léků MeSH
- protoonkogenní proteiny chemie metabolismus MeSH
- sekvence aminokyselin MeSH
- sulfonamidy farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 2-(1H-indazol-4-yl)-6-(4-methanesulfonylpiperazin-1-ylmethyl)-4-morpholin-4-ylthieno(3,2-d)pyrimidine MeSH Prohlížeč
- fosfothreonin MeSH
- hepatocytární růstový faktor MeSH
- indazoly MeSH
- inhibitory fosfoinositid-3-kinasy MeSH
- inhibitory kaspas MeSH
- kaspasy MeSH
- macrophage stimulating protein MeSH Prohlížeč
- mitogenem aktivované proteinkinasy kinas MeSH
- piperaziny MeSH
- protoonkogenní proteiny MeSH
- SCH772984 MeSH Prohlížeč
- sulfonamidy MeSH