Nejvíce citovaný článek - PubMed ID 29043586
Photocatalytic decomposition of methanol over La/TiO2 materials
The use of an irradiation source with a homogeneous distribution of irradiation in the volume of the reaction mixture belongs to the essential aspects of heterogeneous photocatalysis. First, the efficacy of six lamps with various radiation intensity and distribution characteristics is contrasted. The topic of discussion is the photocatalytic hydrogen production from a methanol-water solution in the presence of a NiO-TiO2 photocatalyst. The second section is focused on the potential of a micro-photoreactor system-the batch reactor with a micro-reactor with a circulating reaction mixture, in which the photocatalytic reaction takes place using TiO2 immobilized on borosilicate glass. Continuous photocatalytic hydrogen generation from a methanol-water solution is possible in a micro-photoreactor. This system produced 333.7 ± 21.1 µmol H2 (252.8 ± 16.0 mmol.m-2, the hydrogen formation per thin film area) in a reproducible manner during 168 h.
- Klíčová slova
- UV-LED lamp, batch reactor, hydrogen production, intensity, irradiation, micro-photoreactor,
- Publikační typ
- časopisecké články MeSH
Graphitic carbon nitride (C3N4) was synthesised from melamine at 550 °C for 4 h in the argon atmosphere and then was reheated for 1-3 h at 500 °C in argon. Two band gaps of 2.04 eV and 2.47 eV were observed in all the synthetized materials. Based on the results of elemental and photoluminescence analyses, the lower band gap was found to be caused by the formation of vacancies. Specific surface areas of the synthetized materials were 15-18 m2g-1 indicating that no thermal exfoliation occurred. The photocatalytic activity of these materials was tested for hydrogen generation. The best photocatalyst showed 3 times higher performance (1547 μmol/g) than bulk C3N4 synthetized in the air (547 μmol/g). This higher activity was explained by the presence of carbon (VC) and nitrogen (VN) vacancies grouped in their big complexes 2VC + 2VN (observed by positron annihilation spectroscopy). The effect of an inert gas on the synthesis of C3N4 was demonstrated using Graham´s law of ammonia diffusion. This study showed that the synthesis of C3N4 from nitrogen-rich precursors in the argon atmosphere led to the formation of vacancy complexes beneficial for hydrogen generation, which was not referred so far.
- Publikační typ
- časopisecké články MeSH
Pt, Ru, and Ir were introduced onto the surface of graphitic carbon nitride (g-C3N4) using the wet impregnation method. A reduction of these photocatalysts with hydrogen causes several changes, such as a significant increase in the specific surface area, a C/N atomic ratio, a number of defects in the crystalline structure of g-C3N4, and the contribution of nitrogen bound to the amino and imino groups. According to the X-ray photoelectron spectroscopy results, a transition layer is formed at the g-C3N4/metal nanoparticle interphase, which contains metal at a positive degree of oxidation bonded to nitrogen. These structural changes significantly enhanced the photocatalytic activity in the production of hydrogen through the water-splitting reaction. The activity of the platinum photocatalyst was 24 times greater than that of pristine g-C3N4. Moreover, the enhanced activity was attributed to significantly better separation of photogenerated electron-hole pairs on metal nanoparticles and structural distortions of g-C3N4.
- Klíčová slova
- graphitic carbon nitride, metal photocatalysts, photocatalytic activity, physicochemical characterization, wet impregnation method,
- Publikační typ
- časopisecké články MeSH
Graphitic carbon nitride (g-C3N4) was obtained by thermal polymerization of dicyandiamide, thiourea or melamine at high temperatures (550 and 600 °C), using different heating rates (2 or 10 °C min-1) and synthesis times (0 or 4 h). The effects of the synthesis conditions and type of the precursor on the efficiency of g-C3N4 were studied. The most efficient was the synthesis from dicyandiamide, 53%, while the efficiency in the process of synthesis from melamine and thiourea were much smaller, 26% and 11%, respectively. On the basis of the results provided by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-vis), thermogravimetric analysis (TGA), elemental analysis (EA), the best precursor and the optimum conditions of synthesis of g-C3N4 were identified to get the product of the most stable structure, the highest degree of ordering and condensation of structure and finally the highest photocatalytic activity. It was found that as the proton concentration decreased and the degree of condensation increased, the hydrogen yields during the photocatalytic decomposition of water-methanol solution were significantly enhanced. The generation of hydrogen was 1200 µmol g-1 and the selectivity towards hydrogen of more than 98%.
- Klíčová slova
- graphitic carbon nitride, hydrogen generation, melon, photocatalysis, synthesis conditions,
- Publikační typ
- časopisecké články MeSH
We describe the successful possibility of the immobilization of a photocatalyst on foam, which is beneficial from a practical point of view. An immobilized photocatalyst is possible for use in a continuous experiment and can be easily separated from the reactor after the reaction concludes. Parent TiO2, La/TiO2, and Nd/TiO2 photocatalysts (containing 0.1 wt.% of lanthanide) were prepared by the sol-gel method and immobilized on Al2O3/SiO2 foam (VUKOPOR A) by the dip-coating method. The photocatalysts were investigated for the photocatalytic hydrogen generation from an aqueous ammonia solution under UVA light (365 nm). The evolution of hydrogen was compared with photolysis, which was limited to zero. The higher hydrogen generation was observed in the presence of 0.1 wt.% La/TiO2 than in 0.1 wt.% Nd/TiO2. This is, besides other things, related to the higher level of the conduction band, which was observed for 0.1 wt.% La/TiO2. The higher conduction band's position is more effective for hydrogen production from ammonia decomposition.
- Klíčová slova
- TiO2, ammonia, hydrogen production, immobilized and powder photocatalyst, lanthanides,
- Publikační typ
- časopisecké články MeSH
F-La/TiO2 photocatalysts were studied in photocatalytic decomposition water-methanol solution. The structural, textural, optical, and electronic properties of F-La/TiO2 photocatalysts were studied by combination of X-ray powder diffraction (XRD), nitrogen physisorption, Ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS), Electrochemical impedance spectroscopy (EIS), and X-ray fluorescence (XPS). The production of hydrogen in the presence of 2.8F-La/TiO2 was nearly up to 3 times higher than in the presence of pure TiO2. The photocatalytic performance of F-La/TiO2 increased with increasing photocurrent response and conductivity originating from the higher amount of fluorine presented in the lattice of TiO2.
- Klíčová slova
- fluorine, hydrogen production, lanthanum, titanium dioxide,
- Publikační typ
- časopisecké články MeSH
Neodymium enriched TiO2 anatase-brookite powders were prepared by unconventional method via using pressurized hot fluids for TiO2 crystallization and purification. The photocatalysts were tested in the CH3OH photocatalytic decomposition and they were characterized with respect to the textural (nitrogen adsorption), structural (XRD, XPS, and Raman spectroscopies), chemical (XRF), and optical (DR UV-Vis spectroscopy) and photoelectrochemical measurement. All prepared materials were nanocrystalline, had biphasic (anatase- brookite) structure and relatively large specific surface area (125 m2.g-1). The research work indicates that the doping of neodymium on TiO2 photocatalysts significantly enhances the efficiency of photocatalytic reaction. The photocatalytic activity increased with increasing portion of hydroxyl oxygen to the total amount of oxygen species. It was ascertained that the optimal amount of 1 wt% Nd in TiO2 accomplished the increasing of hydrogen production by 70% in comparison with pure TiO2. The neodymium doped on the titanium dioxide act as sites with accumulation of electrons. The higher efficiency of photocatalytic process was achieved due to improved electron-hole separation on the modified TiO2 photocatalysts. This result was confirmed by electrochemical measurements, the most active photocatalysts proved the highest photocurrent responses.
- Klíčová slova
- CH3OH photocatalytic decomposition, TiO2 anatase-brookite, electron-hole separation, hydrogen production, neodymium, photocatalysis,
- Publikační typ
- časopisecké články MeSH