Most cited article - PubMed ID 29104318
Comparison of the oxidation of carcinogenic aristolochic acid I and II by microsomal cytochromes P450 in vitro: experimental and theoretical approaches
The plant extract aristolochic acid (AA), containing aristolochic acids I (AAI) and II (AAII) as major components, causes aristolochic acid nephropathy (AAN) and Balkan endemic nephropathy (BEN), unique renal diseases associated with upper urothelial cancer. Recently (Chemical Research in Toxicology 33(11), 2804-2818, 2020), we showed that the in vivo metabolism of AAI and AAII in Wistar rats is influenced by their co-exposure (i.e., AAI/AAII mixture). Using the same rat model, we investigated how exposure to the AAI/AAII mixture can influence AAI and AAII DNA adduct formation (i.e., AA-mediated genotoxicity). Using 32P-postlabelling, we found that AA-DNA adduct formation was increased in the livers and kidneys of rats treated with AAI/AAII mixture compared to rats treated with AAI or AAII alone. Measuring the activity of enzymes involved in AA metabolism, we showed that enhanced AA-DNA adduct formation might be caused partially by both decreased AAI detoxification as a result of hepatic CYP2C11 inhibition during treatment with AAI/AAII mixture and by hepatic or renal NQO1 induction, the key enzyme predominantly activating AA to DNA adducts. Moreover, our results indicate that AAII might act as an inhibitor of AAI detoxification in vivo. Consequently, higher amounts of AAI might remain in liver and kidney tissues, which can be reductively activated, resulting in enhanced AAI DNA adduct formation. Collectively, these results indicate that AAII present in the plant extract AA enhances the genotoxic properties of AAI (i.e., AAI DNA adduct formation). As patients suffering from AAN and BEN are always exposed to the plant extract (i.e., AAI/AAII mixture), our findings are crucial to better understanding host factors critical for AAN- and BEN-associated urothelial malignancy.
- Keywords
- Balkan endemic nephropathy, DNA adducts, NAD(P)H:quinone oxidoreductase 1, aristolochic acid I, aristolochic acid II, aristolochic acid nephropathy, aristolochic acid-mediated carcinogenesis, cytochrome P450, genotoxicity,
- MeSH
- DNA Adducts metabolism MeSH
- DNA, Neoplasm metabolism MeSH
- Carcinogenesis * chemically induced metabolism MeSH
- Carcinogens toxicity MeSH
- Rats MeSH
- Aristolochic Acids toxicity MeSH
- Rats, Wistar MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- DNA Adducts MeSH
- aristolochic acid B MeSH Browser
- aristolochic acid I MeSH Browser
- DNA, Neoplasm MeSH
- Carcinogens MeSH
- Aristolochic Acids MeSH
The metabolism of vandetanib, a tyrosine kinase inhibitor used for treatment of symptomatic/progressive medullary thyroid cancer, was studied using human hepatic microsomes, recombinant cytochromes P450 (CYPs) and flavin-containing monooxygenases (FMOs). The role of CYPs and FMOs in the microsomal metabolism of vandetanib to N-desmethylvandetanib and vandetanib-N-oxide was investigated by examining the effects of CYP/FMO inhibitors and by correlating CYP-/FMO-catalytic activities in each microsomal sample with the amounts of N-desmethylvandetanib/vandetanib-N-oxide formed by these samples. CYP3A4/FMO-activities significantly correlated with the formation of N-desmethylvandetanib/ vandetanib-N-oxide. Based on these studies, most of the vandetanib metabolism was attributed to N-desmethylvandetanib/vandetanib-N-oxide to CYP3A4/FMO3. Recombinant CYP3A4 was most efficient to form N-desmethylvandetanib, while FMO1/FMO3 generated N-oxide. Cytochrome b5 stimulated the CYP3A4-catalyzed formation of N-desmethylvandetanib, which is of great importance because CYP3A4 is not only most efficient in generating N-desmethylvandetanib, but also most significant due to its high expression in human liver. Molecular modeling indicated that binding of more than one molecule of vandetanib into the CYP3A4-active center can be responsible for the high efficiency of CYP3A4 N-demethylating vandetanib. Indeed, the CYP3A4-mediated reaction exhibits kinetics of positive cooperativity and this corresponded to the in silico model, where two vandetanib molecules were found in CYP3A4-active center.
- Keywords
- cytochromes P450, flavin-containing monoxygenases, metabolism, tyrosine kinase inhibitor, vandetanib,
- MeSH
- Quinazolines chemistry pharmacology MeSH
- Cytochrome P-450 CYP3A chemistry metabolism MeSH
- Enzymes chemistry metabolism MeSH
- Protein Kinase Inhibitors chemistry pharmacology MeSH
- Microsomes, Liver metabolism MeSH
- Rabbits MeSH
- Rats MeSH
- Humans MeSH
- Molecular Conformation MeSH
- Models, Molecular MeSH
- Molecular Structure MeSH
- Mice MeSH
- Oxidation-Reduction * MeSH
- Piperidines chemistry pharmacology MeSH
- Antineoplastic Agents chemistry pharmacology MeSH
- Recombinant Proteins MeSH
- Dose-Response Relationship, Drug MeSH
- Animals MeSH
- Check Tag
- Rabbits MeSH
- Rats MeSH
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Quinazolines MeSH
- Cytochrome P-450 CYP3A MeSH
- Enzymes MeSH
- Protein Kinase Inhibitors MeSH
- Piperidines MeSH
- Antineoplastic Agents MeSH
- Recombinant Proteins MeSH
- vandetanib MeSH Browser
Aristolochic acid (AA) is a plant alkaloid that causes aristolochic acid nephropathy (AAN) and Balkan endemic nephropathy (BEN), unique renal diseases frequently associated with upper urothelial cancer (UUC). This review summarizes the significance of AA-derived DNA adducts in the aetiology of UUC leading to specific A:T to T:A transversion mutations (mutational signature) in AAN/BEN-associated tumours, which are otherwise rare in individuals with UCC not exposed to AA. Therefore, such DNA damage produced by AA-DNA adducts is one rare example of the direct association of exposure and cancer development (UUC) in humans, confirming that the covalent binding of carcinogens to DNA is causally related to tumourigenesis. Although aristolochic acid I (AAI), the major component of the natural plant extract AA, might directly cause interstitial nephropathy, enzymatic activation of AAI to reactive intermediates capable of binding to DNA is a necessary step leading to the formation of AA-DNA adducts and subsequently AA-induced malignant transformation. Therefore, AA-DNA adducts can not only be utilized as biomarkers for the assessment of AA exposure and markers of AA-induced UUC, but also be used for the mechanistic evaluation of its enzymatic activation and detoxification. Differences in AA metabolism might be one of the reasons for an individual's susceptibility in the multi-step process of AA carcinogenesis and studying associations between activities and/or polymorphisms of the enzymes metabolising AA is an important determinant to identify individuals having a high risk of developing AA-mediated UUC.
- Keywords
- DNA adduct formation, aristolochic acid, carcinogenicity, mutagenesis, nephrotoxicity,
- MeSH
- DNA Adducts metabolism MeSH
- Balkan Nephropathy etiology metabolism MeSH
- Biomarkers * MeSH
- Carcinogens chemistry metabolism MeSH
- Aristolochic Acids chemistry metabolism MeSH
- Humans MeSH
- Disease Susceptibility MeSH
- Cell Transformation, Neoplastic genetics metabolism MeSH
- Urologic Neoplasms etiology metabolism pathology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- DNA Adducts MeSH
- Biomarkers * MeSH
- Carcinogens MeSH
- Aristolochic Acids MeSH