Nejvíce citovaný článek - PubMed ID 29313970
Small genome separates native and invasive populations in an ecologically important cosmopolitan grass
The nuclear genome is essential for encoding most of the genes required for cellular processes, but its size alone can alter the characteristics of cells and organisms. Yet, genome size variation and its ecological and evolutionary impacts, particularly in microorganisms, are not well understood. We used flow cytometry to estimate genome size and GC content in 53 evolutionary lineages of the microalgal genus Synura (Chrysophyceae, Stramenopiles). Genome size evolution was reconstructed in a phylogenetic framework using molecular markers. A set of genomic, morphological, and ecogeographic variables characterizing Synura lineages was evaluated and tested as predictors of genome size variation in phylogeny-corrected statistical models. Both genome size and GC content varied widely in Synura, ranging from 0.19 to 3.70 pg of DNA and 34.0% to 49.3%, respectively. Genome size variation was mainly associated with cell size, less with silica scale size, and not with scale ultrastructure. Higher soil nitrogen, higher latitudes, and lower temperatures correlated with larger genomes. Genome size evolution in Synura shows potential dynamism, with increases confined to short terminal branches, indicating lower macroevolutionary stability. Lineages with larger genomes exhibited a narrower range of suitable ecological conditions, possibly due to selection acting deleteriously against larger genomes (and cells).
- Klíčová slova
- GC content, PGLS regression, ecological requirements, evolution, flow cytometry, genome size, silica scales,
- MeSH
- délka genomu * MeSH
- dusík * metabolismus MeSH
- fylogeneze MeSH
- Heterokontophyta * genetika cytologie MeSH
- mikrořasy * genetika cytologie MeSH
- molekulární evoluce MeSH
- velikost buňky MeSH
- zastoupení bazí MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dusík * MeSH
Human factors and plant characteristics are important drivers of plant invasions, which threaten ecosystem integrity, biodiversity and human well-being. However, while previous studies often examined a limited number of factors or focused on a specific invasion stage (e.g., naturalization) for specific regions, a multi-factor and multi-stage analysis at the global scale is lacking. Here, we employ a multi-level framework to investigate the interplay between plant characteristics (genome size, Grime's adaptive CSR-strategies and native range size) and economic use and how these factors collectively affect plant naturalization and invasion success worldwide. While our findings derived from structural equation models highlight the substantial contribution of human assistance in both the naturalization and spread of invasive plants, we also uncovered the pivotal role of species' adaptive strategies among the factors studied, and the significantly varying influence of these factors across invasion stages. We further revealed that the effects of genome size on plant invasions were partially mediated by species adaptive strategies and native range size. Our study provides insights into the complex and dynamic process of plant invasions and identifies its key drivers worldwide.
- MeSH
- biodiverzita MeSH
- délka genomu MeSH
- ekologie MeSH
- ekosystém * MeSH
- lidé MeSH
- rostliny genetika MeSH
- státní občanství * MeSH
- zavlečené druhy MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
The metabolome represents an important functional trait likely important to plant invasion success, but we have a limited understanding of whether the entire metabolome or targeted groups of compounds confer an advantage to invasive as compared to native taxa. We conducted a lipidomic and metabolomic analysis of the cosmopolitan wetland grass Phragmites australis. We classified features into metabolic pathways, subclasses, and classes. Subsequently, we used Random Forests to identify informative features to differentiate five phylogeographic and ecologically distinct lineages: European native, North American invasive, North American native, Gulf, and Delta. We found that lineages had unique phytochemical fingerprints, although there was overlap between the North American invasive and North American native lineages. Furthermore, we found that divergence in phytochemical diversity was driven by compound evenness rather than metabolite richness. Interestingly, the North American invasive lineage had greater chemical evenness than the Delta and Gulf lineages but lower evenness than the North American native lineage. Our results suggest that metabolomic evenness may represent a critical functional trait within a plant species. Its role in invasion success, resistance to herbivory, and large-scale die-off events common to this and other plant species remain to be investigated.
- Klíčová slova
- Common Reed, Ecological Omics, Invasion Ecology, Invasive Plant Species, Liquid Chromatography–Mass Spectrometry (LC–MS), Phytochemistry,
- MeSH
- fenotyp MeSH
- fytonutrienty MeSH
- lipnicovité * MeSH
- mokřady * MeSH
- rostliny MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fytonutrienty MeSH
Among the traits whose relevance for plant invasions has recently been suggested are genome size (the amount of nuclear DNA) and ploidy level. So far, research on the role of genome size in invasiveness has been mostly based on indirect evidence by comparing species with different genome sizes, but how karyological traits influence competition at the intraspecific level remains unknown. We addressed these questions in a common-garden experiment evaluating the outcome of direct intraspecific competition among 20 populations of Phragmites australis, represented by clones collected in North America and Europe, and differing in their status (native and invasive), genome size (small and large), and ploidy levels (tetraploid, hexaploid, or octoploid). Each clone was planted in competition with one of the others in all possible combinations with three replicates in 45-L pots. Upon harvest, the identity of 21 shoots sampled per pot was revealed by flow cytometry and DNA analysis. Differences in performance were examined using relative proportions of shoots of each clone, ratios of their aboveground biomass, and relative yield total (RYT). The performance of the clones in competition primarily depended on the clone status (native vs. invasive). Measured in terms of shoot number or aboveground biomass, the strongest signal observed was that North American native clones always lost in competition to the other two groups. In addition, North American native clones were suppressed by European natives to a similar degree as by North American invasives. North American invasive clones had the largest average shoot biomass, but only by a limited, nonsignificant difference due to genome size. There was no effect of ploidy on competition. Since the North American invaders of European origin are able to outcompete the native North American clones, we suggest that their high competitiveness acts as an important driver in the early stages of their invasion.
- Klíčová slova
- Europe, North America, common reed, genome size, intraspecific competition, native populations, plant invasion, ploidy level,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The invasive benthic round goby (Neogobius melanostomus) is the most successful temperate invasive fish and has spread in aquatic ecosystems on both sides of the Atlantic. Invasive species constitute powerful in situ experimental systems to study fast adaptation and directional selection on short ecological timescales and present promising case studies to understand factors involved the impressive ability of some species to colonize novel environments. We seize the unique opportunity presented by the round goby invasion to study genomic substrates potentially involved in colonization success. RESULTS: We report a highly contiguous long-read-based genome and analyze gene families that we hypothesize to relate to the ability of these fish to deal with novel environments. The analyses provide novel insights from the large evolutionary scale to the small species-specific scale. We describe expansions in specific cytochrome P450 enzymes, a remarkably diverse innate immune system, an ancient duplication in red light vision accompanied by red skin fluorescence, evolutionary patterns of epigenetic regulators, and the presence of osmoregulatory genes that may have contributed to the round goby's capacity to invade cold and salty waters. A recurring theme across all analyzed gene families is gene expansions. CONCLUSIONS: The expanded innate immune system of round goby may potentially contribute to its ability to colonize novel areas. Since other gene families also feature copy number expansions in the round goby, and since other Gobiidae also feature fascinating environmental adaptations and are excellent colonizers, further long-read genome approaches across the goby family may reveal whether gene copy number expansions are more generally related to the ability to conquer new habitats in Gobiidae or in fish.
- Klíčová slova
- Adaptation, Detoxification, Epigenetics, Evolution, Fish, Gene duplication, Genomics, Innate immunity, Invasive species, Neogobius melanostomus, Olfaction, Osmoregulation, PacBio, Vision,
- MeSH
- genom * MeSH
- ryby genetika fyziologie MeSH
- zavlečené druhy * MeSH
- zvířata MeSH
- zvláštnosti životní historie * MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Identifying the factors that influence spatial genetic structure among populations can provide insights into the evolution of invasive plants. In this study, we used the common reed (Phragmites australis), a grass native in Europe and invading North America, to examine the relative importance of geographic, environmental (represented by climate here), and human effects on population genetic structure and its changes during invasion. We collected samples of P. australis from both the invaded North American and native European ranges and used molecular markers to investigate the population genetic structure within and between ranges. We used path analysis to identify the contributions of each of the three factors-geographic, environmental, and human-related-to the formation of spatial genetic patterns. Genetic differentiation was observed between the introduced and native populations, and their genetic structure in the native and introduced ranges was different. There were strong effects of geography and environment on the genetic structure of populations in the native range, but the human-related factors manifested through colonization of anthropogenic habitats in the introduced range counteracted the effects of environment. The between-range genetic differences among populations were mainly explained by the heterogeneous environment between the ranges, with the coefficient 2.6 times higher for the environment than that explained by the geographic distance. Human activities were the primary contributor to the genetic structure of the introduced populations. The significant environmental divergence between ranges and the strong contribution of human activities to the genetic structure in the introduced range suggest that invasive populations of P. australis have evolved to adapt to a different climate and to human-made habitats in North America.
- Klíčová slova
- Phragmites, biological invasions, common reed, evolution, human activities, isolation by distance, isolation by environment, landscape genetics, spatial genetic structure,
- Publikační typ
- časopisecké články MeSH