Most cited article - PubMed ID 24697788
Numerous plant species are expanding their native ranges due to anthropogenic environmental change. Because cytotypes of polyploid complexes often show similar morphologies, there may be unnoticed range expansions (i.e. cryptic invasions) of one cytotype into regions where only the other cytotype is native. We critically revised herbarium specimens of diploid and tetraploid Centaurea stoebe, collected across Europe between 1790 and 2023. Based on their distribution in natural and relict habitats and phylogeographic data, we estimated the native ranges of both cytotypes. Diploids are native across their entire European range, whereas tetraploids are native only to South-Eastern Europe and have recently expanded their range toward Central Europe. The proportion of tetraploids has exponentially increased over time in their expanded but not in their native range. This cryptic invasion predominantly occurred in ruderal habitats and enlarged the climatic niche of tetraploids toward a more oceanic climate. We conclude that spatio-temporally explicit assessments of range shifts, habitat preferences and niche evolution can improve our understanding of cryptic invasions. We also emphasize the value of herbarium specimens for accurate estimation of species´ native ranges, with fundamental implications for the design of research studies and the assessment of biodiversity trends.
- Keywords
- Centaurea stoebe (spotted knapweed), climatic niche, colonization ability, cryptic invasion, herbarium specimens, polyploidy, range expansion, ruderal habitats,
- MeSH
- Centaurea * genetics physiology MeSH
- Diploidy MeSH
- Ecosystem MeSH
- Phylogeography MeSH
- Polyploidy * MeSH
- Introduced Species * MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Europe MeSH
Human factors and plant characteristics are important drivers of plant invasions, which threaten ecosystem integrity, biodiversity and human well-being. However, while previous studies often examined a limited number of factors or focused on a specific invasion stage (e.g., naturalization) for specific regions, a multi-factor and multi-stage analysis at the global scale is lacking. Here, we employ a multi-level framework to investigate the interplay between plant characteristics (genome size, Grime's adaptive CSR-strategies and native range size) and economic use and how these factors collectively affect plant naturalization and invasion success worldwide. While our findings derived from structural equation models highlight the substantial contribution of human assistance in both the naturalization and spread of invasive plants, we also uncovered the pivotal role of species' adaptive strategies among the factors studied, and the significantly varying influence of these factors across invasion stages. We further revealed that the effects of genome size on plant invasions were partially mediated by species adaptive strategies and native range size. Our study provides insights into the complex and dynamic process of plant invasions and identifies its key drivers worldwide.
- MeSH
- Biodiversity MeSH
- Genome Size MeSH
- Ecology MeSH
- Ecosystem * MeSH
- Humans MeSH
- Plants genetics MeSH
- Citizenship * MeSH
- Introduced Species MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
The establishment and success of polyploids are thought to often be facilitated by ecological niche differentiation from diploids. Unfortunately, most studies compared diploids and polyploids, ignoring variation in ploidy level in polyploids. To fill this gap, we performed a large-scale study of 11,163 samples from 1,283 populations of the polyploid perennial geophyte Allium oleraceum with reported mixed-ploidy populations, revealed distribution ranges of cytotypes, assessed their niches and explored the pattern of niche change with increasing ploidy level. Altogether, six ploidy levels (3x-8x) were identified. The most common were pentaploids (53.6%) followed by hexaploids (22.7%) and tetraploids (21.6%). Higher cytotype diversity was found at lower latitudes than at higher latitudes (>52° N), where only tetraploids and pentaploids occurred. We detected 17.4% of mixed-ploidy populations, usually as a combination of two, rarely of three, cytotypes. The majority of mixed-ploidy populations were found in zones of sympatry of the participating cytotypes, suggesting they have arisen through migration (secondary contact zone). Using coarse-grained variables (climate, soil), we found evidence of both niche expansion and innovation in tetraploids related to triploids, whereas higher ploidy levels showed almost zero niche expansion, but a trend of increased niche unfilling of tetraploids. Niche unfilling in higher ploidy levels was caused by a contraction of niche envelopes toward lower continentality of the climate and resulted in a gradual decrease of niche breadth and a gradual shift in niche optima. Field-recorded data indicated wide habitat breadth of tetraploids and pentaploids, but also a pattern of increasing synanthropy in higher ploidy levels. Wide niche breadth of tetra- and pentaploids might be related to their multiple origins from different environmental conditions, higher "age", and retained sexuality, which likely preserve their adaptive potential. In contrast, other cytotypes with narrower niches are mostly asexual, probably originating from a limited range of contrasting environments. Persistence of local ploidy mixtures could be enabled by the perenniality of A. oleraceum and its prevalence of vegetative reproduction, facilitating the establishment and decreasing exclusion of minority cytotype due to its reproductive costs. Vegetative reproduction might also significantly accelerate colonization of new areas, including recolonization of previously glaciated areas.
- Keywords
- chromosome numbers, cytogeography, ecological niche, flow cytometry, geophytes, ploidy coexistence, polyploidy,
- Publication type
- Journal Article MeSH
Among the traits whose relevance for plant invasions has recently been suggested are genome size (the amount of nuclear DNA) and ploidy level. So far, research on the role of genome size in invasiveness has been mostly based on indirect evidence by comparing species with different genome sizes, but how karyological traits influence competition at the intraspecific level remains unknown. We addressed these questions in a common-garden experiment evaluating the outcome of direct intraspecific competition among 20 populations of Phragmites australis, represented by clones collected in North America and Europe, and differing in their status (native and invasive), genome size (small and large), and ploidy levels (tetraploid, hexaploid, or octoploid). Each clone was planted in competition with one of the others in all possible combinations with three replicates in 45-L pots. Upon harvest, the identity of 21 shoots sampled per pot was revealed by flow cytometry and DNA analysis. Differences in performance were examined using relative proportions of shoots of each clone, ratios of their aboveground biomass, and relative yield total (RYT). The performance of the clones in competition primarily depended on the clone status (native vs. invasive). Measured in terms of shoot number or aboveground biomass, the strongest signal observed was that North American native clones always lost in competition to the other two groups. In addition, North American native clones were suppressed by European natives to a similar degree as by North American invasives. North American invasive clones had the largest average shoot biomass, but only by a limited, nonsignificant difference due to genome size. There was no effect of ploidy on competition. Since the North American invaders of European origin are able to outcompete the native North American clones, we suggest that their high competitiveness acts as an important driver in the early stages of their invasion.
- Keywords
- Europe, North America, common reed, genome size, intraspecific competition, native populations, plant invasion, ploidy level,
- Publication type
- Journal Article MeSH
Plant invasions are prime opportunities for studying hybridization and the nature of species boundaries, but hybrids also complicate the taxonomic treatment and management of introduced taxa. In this study, we use population genomics to estimate the extent of genomic admixture and test for its association with morphology and genome size in a hybrid complex of knapweeds invasive to North America: meadow knapweed (Centaurea × moncktonii) and its parental species (C. jacea and C. nigra). We sampled 20 populations from New York and Vermont, USA, and used genotyping by sequencing to identify single nucleotide polymorphisms in order to estimate genome-wide ancestry and classify individuals into hybrid genotype classes. We then tested for association between degree of genomic introgression and variation in a subset of traits diagnostic for the parental taxa, namely capitula morphology and monoploid genome size. Genomic clustering revealed two clearly defined lineages, as well as many admixed individuals forming a continuous gradation of introgression. Individual assignments to hybrid genotype classes revealed many advanced generation intercrosses and backcrosses, suggesting introgression has been extensive and unimpeded by strong reproductive barriers between taxa. Variation in capitula traits between the two unadmixed, presumed parental, lineages exhibited continuous, and in some cases transgressive, segregation among introgressed hybrids. Genome size was also divergent between lineages, although advanced generation hybrids had smaller genomes relative to additive expectations. Our study demonstrates deep introgression between the porous genomes of a hybrid invasive species complex. In addition to strong associations among genomic ancestry, genome size and morphology, hybrids expressed more extreme phenotypic values for capitula traits and genome size, indicating transgressive segregation, as well as a bias towards smaller genomes, possibly due to genomic downsizing. Future studies will apply these results to experimentally test how introgression, transgressive segregation and genome size reduction interact to confer invasiveness.
- Keywords
- Asteraceae, Centaurea jacea, Centaurea nigra, black knapweed, brown knapweed, genomic admixture, genotyping by sequencing, introgression, single nucleotide polymorphisms,
- Publication type
- Journal Article MeSH
Species may become invasive after introduction to a new range because phenotypic traits pre-adapt them to spread and become dominant. In addition, adaptation to novel selection pressures in the introduced range may further increase their potential to become invasive. The diploid Leucanthemum vulgare and the tetraploid L. ircutianum are native to Eurasia and have been introduced to North America, but only L. vulgare has become invasive. To investigate whether phenotypic differences between the two species in Eurasia could explain the higher abundance of L. vulgare in North America and whether rapid evolution in the introduced range may have contributed to its invasion success, we grew 20 L. vulgare and 21 L. ircutianum populations from Eurasia and 21 L. vulgare populations from North America under standardized conditions and recorded performance and functional traits. In addition, we recorded morphological traits to investigate whether the two closely related species can be clearly distinguished by morphological means and to what extent morphological traits have changed in L. vulgare post-introduction. We found pronounced phenotypic differences between L. vulgare and L. ircutianum from the native range as well as between L. vulgare from the native and introduced ranges. The two species differed significantly in morphology but only moderately in functional or performance traits that could have explained the higher invasion success of L. vulgare in North America. In contrast, leaf morphology was similar between L. vulgare from the native and introduced range, but plants from North America flowered later, were larger and had more and larger flower heads than those from Eurasia. In summary, we found litte evidence that specific traits of L. vulgare may have pre-adapted this species to become more invasive than L. ircutianum, but our results indicate that rapid evolution in the introduced range likely contributed to the invasion success of L. vulgare.
- MeSH
- Acclimatization MeSH
- Principal Component Analysis MeSH
- Asteraceae anatomy & histology genetics physiology MeSH
- Biological Evolution MeSH
- Biomass MeSH
- Phenotype MeSH
- Inflorescence genetics physiology MeSH
- Linear Models MeSH
- Plant Leaves anatomy & histology genetics MeSH
- Introduced Species * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Comparative Study MeSH
- Geographicals
- Europe MeSH
- North America MeSH
- Middle East MeSH
BACKGROUND AND AIMS: Aesculus L. (horse chestnut, buckeye) is a genus of 12-19 extant woody species native to the temperate Northern Hemisphere. This genus is known for unusually large seeds among angiosperms. While chromosome counts are available for many Aesculus species, only one has had its genome size measured. The aim of this study is to provide more genome size data and analyse the relationship between genome size and seed mass in this genus. METHODS: Chromosome numbers in root tip cuttings were confirmed for four species and reported for the first time for three additional species. Flow cytometric measurements of 2C nuclear DNA values were conducted on eight species, and mean seed mass values were estimated for the same taxa. KEY RESULTS: The same chromosome number, 2 n = 40, was determined in all investigated taxa. Original measurements of 2C values for seven Aesculus species (eight taxa), added to just one reliable datum for A. hippocastanum , confirmed the notion that the genome size in this genus with relatively large seeds is surprisingly low, ranging from 0·955 pg 2C -1 in A. parviflora to 1·275 pg 2C -1 in A. glabra var. glabra. CONCLUSIONS: The chromosome number of 2 n = 40 seems to be conclusively the universal 2 n number for non-hybrid species in this genus. Aesculus genome sizes are relatively small, not only within its own family, Sapindaceae, but also within woody angiosperms. The genome sizes seem to be distinct and non-overlapping among the four major Aesculus clades. These results provide an extra support for the most recent reconstruction of Aesculus phylogeny. The correlation between the 2C values and seed masses in examined Aesculus species is slightly negative and not significant. However, when the four major clades are treated separately, there is consistent positive association between larger genome size and larger seed mass within individual lineages.
- Keywords
- Aesculus, chromosome number, genome size, phylogeny, seed mass,
- MeSH
- Aesculus genetics physiology MeSH
- Chromosomes, Plant * MeSH
- Genome Size * MeSH
- Genome, Plant * MeSH
- Ploidies MeSH
- Seeds physiology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH