Nejvíce citovaný článek - PubMed ID 29352941
Green bionanocomposites have garnered considerable attention and applications in the pharmaceutical and packaging industries because of their intrinsic features, such as biocompatibility and biodegradability. The work presents a novel approach towards the combined effect of glycerol, tween 80 and silver nanoparticles (AgNPs) on the physicochemical properties of lyophilized chitosan (CH) scaffolds produced via a green synthesis method.The produced bionanocomposites were characterized with the help of Fourier transform infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM). The swelling behavior, water vapor transmission rate, moisture retention capability, degradation in Hanks solution, biodegradability in soil, mechanical strength and electrochemical performance of the composites were evaluated. The addition of additives to the CH matrix alters the physicochemical and biological functioning of the matrix. Plasticized scaffolds showed an increase in swelling degree, water vapor transmission rate and degradability in Hank's balanced solution compared to the blank chitosan scaffolds. The addition of tween 80 made the scaffolds more porous, and changes in physicochemical properties were observed. Green-synthesized AgNPs showed intensified antioxidant and antibacterial properties. Incorporating biogenic nanoparticles into the CH matrix enhances the polymer composites' biochemical properties and increases the demand in the medical and biological sectors. These freeze-dried chitosan-AgNPs composite scaffolds had tremendous applications, especially in biomedical fields like wound dressing, tissue engineering, bone regeneration, etc.
- Klíčová slova
- antibacterial, antioxidant, bionanocomposites, bone regeneration, chitosan scaffold, glycerol, silver nanoparticles, tissue engineering, tween 80, wound dressing,
- Publikační typ
- časopisecké články MeSH
The food packaging industry explores economically viable, environmentally benign, and non-toxic packaging materials. Biopolymers, including chitosan (CH) and gelatin (GE), are considered a leading replacement for plastic packaging materials, with preferred packaging functionality and biodegradability. CH, GE, and different proportions of silver nanoparticles (AgNPs) are used to prepare novel packaging materials using a simple solution casting method. The functional and morphological characterization of the prepared films was carried out by using Fourier transform infrared spectroscopy (FTIR), UV-Visible spectroscopy, and scanning electron microscopy (SEM). The mechanical strength, solubility, water vapor transmission rate, swelling behavior, moisture retention capability, and biodegradability of composite films were evaluated. The addition of AgNPs to the polymer blend matrix improves the physicochemical and biological functioning of the matrix. Due to the cross-linking motion of AgNPs, it is found that the swelling degree, moisture retention capability, and water vapor transmission rate slightly decrease. The tensile strength of pure CH-GE films was 24.4 ± 0.03, and it increased to 25.8 ± 0.05 MPa upon the addition of 0.0075% of AgNPs. The real-time application of the films was tested by evaluating the shelf-life existence of carrot pieces covered with the composite films. The composite film containing AgNPs becomes effective in lowering bacterial contamination while comparing the plastic polyethylene films. In principle, the synthesized composite films possessed all the ideal characteristics of packaging material and were considered biodegradable and biocompatible food packaging material and an alternate option for petroleum-based plastics.
- Klíčová slova
- antimicrobial, bio-nanocomposites, chitosan, food packaging, gelatin, silver nanoparticles,
- Publikační typ
- časopisecké články MeSH
In this study, thin, polymeric films consisting of poly(vinyl alcohol) (PVA) and chitosan (Ch) with the addition of poly(hexamethylene guanidine) (PHMG) were successfully prepared. The obtained materials were analyzed to determine their physicochemical and biocidal properties. In order to confirm the structure of PHMG, nuclear magnetic resonance spectroscopy (1H NMR) was applied, while in the case of the obtained films, attenuated total reflectance infrared spectroscopy with Fourier transform (FTIR-ATR) was used. The surface morphology of the polymer films was evaluated based on atomic force microscopy. Furthermore, the mechanical properties, color changes, and thermal stability of the obtained materials were determined. Microbiological tests were performed to evaluate the biocidal properties of the new materials with and without the addition of PHMG. These analyses confirmed the biocidal potential of films modified by PHMG and allowed for comparisons of their physicochemical properties with the properties of native films. In summary, films consisting of PVA and PHMG displayed higher antimicrobial potentials against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria in comparison to PVA:Ch-based films with the addition of PHMG.
- Klíčová slova
- antibacterial properties, chitosan, poly(hexamethylene guanidine), poly(vinyl alcohol), polymeric films, surface properties,
- Publikační typ
- časopisecké články MeSH
Waste from non-degradable plastics is becoming an increasingly serious problem. Therefore, more and more research focuses on the development of materials with biodegradable properties. Bio-polymers are excellent raw materials for the production of such materials. Bio-based biopolymer films reinforced with nanostructures have become an interesting area of research. Nanocomposite films are a group of materials that mainly consist of bio-based natural (e.g., chitosan, starch) and synthetic (e.g., poly(lactic acid)) polymers and nanofillers (clay, organic, inorganic, or carbon nanostructures), with different properties. The interaction between environmentally friendly biopolymers and nanofillers leads to the improved functionality of nanocomposite materials. Depending on the properties of nanofillers, new or improved properties of nanocomposites can be obtained such as: barrier properties, improved mechanical strength, antimicrobial, and antioxidant properties or thermal stability. This review compiles information about biopolymers used as the matrix for the films with nanofillers as the active agents. Particular emphasis has been placed on the influence of nanofillers on functional properties of biopolymer films and their possible use within the food industry and food packaging systems. The possible applications of those nanocomposite films within other industries (medicine, drug and chemical industry, tissue engineering) is also briefly summarized.
- Klíčová slova
- antimicrobial activity, biopolymer films, film mechanical properties, film permeability, food packaging systems, functional properties, nanocomposite materials, nanofillers,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH