Most cited article - PubMed ID 29378012
i-Motif of cytosine-rich human telomere DNA fragments containing natural base lesions
Nucleic acids, molecules essential for all life, can adopt many alternative structures besides the well-known right-handed double helix, some of which have been reported to exist and function in vivo. One of the most appropriate methods for structural studies of nucleic acids is circular dichroism spectroscopy, utilizing structure-induced chirality due to the asymmetric winding of absorbing nucleobases. Using electronic CD and absorption spectroscopies in combination with melting experiments, we analyzed a conformational equilibrium between DNA double helix and two alternative conformations of nucleic acids, cytosine i-motifs and guanine quadruplexes, as a function of the primary structure of model G/C-rich sequences, containing blocks of G and C runs in particular DNA strands. This paper is a part of special issue dedicated to 70th anniversary of the Biophysical Institute of the Czech Academy of Sciences, where circular dichroism spectroscopy of nucleic acids has been used successfully and impactfully for many years.
- Keywords
- Circular dichroism spectroscopy, Conformation equilibrium, Cytosine i-motif, DNA, Guanine quadruplex,
- Publication type
- Journal Article MeSH
Cytosine-rich DNA regions can form four-stranded structures based on hemi-protonated C.C+ pairs, called i-motifs (iMs). Using CD, UV absorption, NMR spectroscopy, and DSC calorimetry, we show that model (CnT3)3Cn (Cn) sequences adopt iM under neutral or slightly alkaline conditions for n > 3. However, the iMs are formed with long-lasting kinetics under these conditions and melt with significant hysteresis. Sequences with n > 6 melt in two or more separate steps, indicating the presence of different iM species, the proportion of which is dependent on temperature and incubation time. At ambient temperature, kinetically favored iMs of low stability are formed, most likely consisting of short C.C+ blocks. These species act as kinetic traps and prevent the assembly of thermodynamically favored, fully C.C+ paired iMs. A higher temperature is necessary to unfold the kinetic forms and enable their substitution by a slowly developing thermodynamic structure. This complicated kinetic partitioning process considerably slows down iM folding, making it much slower than the timeframes of biological reactions and, therefore, unlikely to have any biological relevance. Our data suggest kinetically driven iM species as more likely to be biologically relevant than thermodynamically most stable iM forms.
- MeSH
- DNA * genetics chemistry MeSH
- Kinetics MeSH
- Hydrogen-Ion Concentration MeSH
- Nucleic Acid Conformation MeSH
- Nucleotide Motifs MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA * MeSH
The formation of intercalated motifs (iMs) - secondary DNA structures based on hemiprotonated C.C+ pairs in suitable cytosine-rich DNA sequences, is reflected by typical changes in CD and UV absorption spectra. By means of spectroscopic methods, electrophoresis, chemical modifications and other procedures, we characterized iM formation and stability in sequences with different cytosine block lengths interrupted by various numbers and types of nucleotides. Particular attention was paid to the formation of iMs at pH conditions close to neutral. We identified the optimal conditions and minimal requirements for iM formation in DNA sequences, and addressed gaps and inaccurate data interpretations in existing studies to specify principles of iM formation and modes of their folding.
- MeSH
- Cytosine chemistry metabolism MeSH
- DNA chemistry metabolism MeSH
- Kinetics MeSH
- Hydrogen-Ion Concentration MeSH
- Nucleic Acid Conformation * MeSH
- Nucleotide Motifs * MeSH
- Base Pairing MeSH
- Base Sequence MeSH
- Thermodynamics MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Cytosine MeSH
- DNA MeSH