Most cited article - PubMed ID 29973572
Role of Fatty Acids in Milk Fat and the Influence of Selected Factors on Their Variability-A Review
Milk fat is an important nutritional compound in the human diet. From the health point of view, some fatty acids (FAs), particularly long-chain PUFAs such as EPA and DHA, have been at the forefront of interest due to their antibacterial, antiviral, anti-inflammatory, and anti-tumor properties, which play a positive role in the prevention of cardiovascular diseases (CVD), as well as linoleic and γ-linolenic acids, which play an important role in CVD treatment as essential components of phospholipids in the mitochondria of cell membranes. Thus, the modification of the FA profile-especially an increase in the concentration of polyunsaturated FAs and n-3 FAs in bovine milk fat-is desirable. The most effective way to achieve this goal is via dietary manipulations. The effects of various strategies in dairy nutrition have been thoroughly investigated; however, there are some alternative or unconventional feedstuffs that are often used for purposes other than basic feeding or modifying the fatty acid profiles of milk, such as tanniferous plants, herbs and spices, and algae. The use of these foods in dairy diets and their effects on milk fatty acid profile are reviewed in this article. The contents of selected individual FAs (atherogenic, rumenic, linoleic, α-linolenic, eicosapentaenoic, and docosahexaenoic acids) and their combinations; the contents of n3 and n6 FAs; n6/n3 ratios; and atherogenic, health-promoting and S/P indices were used as criteria for assessing the effect of these feeds on the health properties of milk fat.
- Keywords
- algae, camelina, dairy cows, health, herbs and spices, indices, milk fat quality, okara, tannins,
- Publication type
- Journal Article MeSH
- Review MeSH
Rapid analytical methods can contribute to the expansion of milk fatty acid determination for various important practical purposes. The reliability of data resulting from these routine methods plays a crucial role. Bulk and individual milk samples (60 and 345, respectively) were obtained from Czech Fleckvieh and Holstein dairy cows in the Czech Republic. The correlation between milk fatty acid (FA) proportions determined by the routine method (infrared spectroscopy in the mid-region in connection with Fourier transformation; FT-MIR) and the reference method (gas chromatography; GC) was evaluated. To validate the calibration of the FT-MIR method, a linear regression model was used. For bulk milk samples, the correlation coefficients between these methods were higher for the saturated (SFAs) and unsaturated FAs (UFAs) (r = 0.7169 and 0.9232; p < 0.001) than for the trans isomers of UFAs (TFAs) and polyunsaturated FAs (PUFAs) (r = 0.5706 and 0.6278; p < 0.001). Similar results were found for individual milk samples: r = 0.8592 and 0.8666 (p < 0.001) for SFAs and UFAs, 0.1690 (p < 0.01) for TFAs, and 0.3314 (p < 0.001) for PUFAs. The correlation coefficients for TFAs and PUFAs were statistically significant but too low for practical analytical application. The results indicate that the FT-MIR method can be used for routine determination mainly for SFAs and UFAs.
- Keywords
- Czech Fleckvieh, Holstein, correlation coefficient, dairy cow, fatty acids, gas chromatography, mid-infrared spectroscopy, raw milk, regression analysis,
- Publication type
- Journal Article MeSH