Most cited article - PubMed ID 30165550
Structural dynamics of propeller loop: towards folding of RNA G-quadruplex
RNA G-quadruplexes (rG4s) are emerging as vital structural elements involved in processes like gene regulation, translation, and genome stability. Found in untranslated regions of messenger RNAs (mRNAs), they influence translation efficiency and mRNA localization. Additionally, rG4s of long noncoding RNAs and telomeric RNA play roles in RNA processing and cellular aging. Despite their significance, the atomic-level folding mechanisms of rG4s remain poorly understood due to their complexity. We studied the folding of the r(GGGA)3GGG and r(GGGUUA)3GGG (TERRA) sequences into parallel-stranded rG4 using all-atom enhanced-sampling molecular dynamics simulations, applying well-tempered metadynamics coupled with solute tempering. The obtained folding pathways suggest that RNA initially adopts a compacted coil-like ensemble characterized by dynamic guanine stacking and pairing. The three-quartet rG4 gradually forms from this compacted coil ensemble via diverse routes involving strand rearrangements and guanine incorporations. While the folding mechanism is multipathway, various two-quartet rG4 structures appear to be a common transitory ensemble along most routes. Thus, the process seems more complex than previously predicted, as G-hairpins or G-triplexes do not act as distinct intermediates, even though some are occasionally sampled. We also discuss the challenges of applying enhanced sampling methodologies to such a multidimensional free-energy surface and address the force-field limitations.
- MeSH
- G-Quadruplexes * MeSH
- Guanine chemistry MeSH
- Nucleic Acid Conformation MeSH
- RNA * chemistry MeSH
- RNA Folding MeSH
- Molecular Dynamics Simulation MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Guanine MeSH
- RNA * MeSH
Guanine quadruplexes (GQs) play crucial roles in various biological processes, and understanding their folding pathways provides insight into their stability, dynamics, and functions. This knowledge aids in designing therapeutic strategies, as GQs are potential targets for anticancer drugs and other therapeutics. Although experimental and theoretical techniques have provided valuable insights into different stages of the GQ folding, the structural complexity of GQs poses significant challenges, and our understanding remains incomplete. This study introduces a novel computational protocol for folding an entire GQ from single-strand conformation to its native state. By combining two complementary enhanced sampling techniques, we were able to model folding pathways, encompassing a diverse range of intermediates. Although our investigation of the GQ free energy surface (FES) is focused solely on the folding of the all-anti parallel GQ topology, this protocol has the potential to be adapted for the folding of systems with more complex folding landscapes.
- Keywords
- DNA quadruplex, computational folding, enhanced sampling, kinetic partitioning mechanism, metadynamics, molecular dynamics, nudged elastic band, pathCV, transition path sampling,
- MeSH
- DNA chemistry MeSH
- G-Quadruplexes * MeSH
- Nucleic Acid Conformation MeSH
- Molecular Dynamics Simulation MeSH
- Thermodynamics MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- DNA MeSH
Guanine quadruplexes (GQs) are non-canonical nucleic acid structures involved in many biological processes. GQs formed in single-stranded regions often need to be unwound by cellular machinery, so their mechanochemical properties are important. Here, we performed steered molecular dynamics simulations of human telomeric GQs to study their unfolding. We examined four pulling regimes, including a very slow setup with pulling velocity and force load accessible to high-speed atomic force microscopy. We identified multiple factors affecting the unfolding mechanism, i.e.,: (i) the more the direction of force was perpendicular to the GQ channel axis (determined by GQ topology), the more the base unzipping mechanism happened, (ii) the more parallel the direction of force was, GQ opening and cross-like GQs were more likely to occur, (iii) strand slippage mechanism was possible for GQs with an all-anti pattern in a strand, and (iv) slower pulling velocity led to richer structural dynamics with sampling of more intermediates and partial refolding events. We also identified that a GQ may eventually unfold after a force drop under forces smaller than those that the GQ withstood before the drop. Finally, we found out that different unfolding intermediates could have very similar chain end-to-end distances, which reveals some limitations of structural interpretations of single-molecule spectroscopic data.
- MeSH
- G-Quadruplexes * MeSH
- Guanine * chemistry MeSH
- Humans MeSH
- Mechanical Phenomena MeSH
- Molecular Dynamics Simulation MeSH
- Telomere MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Guanine * MeSH
RNA G-quadruplexes have been suggested to play key roles in fundamental biological processes and are linked to human diseases. Thus, they also represent good potential therapeutic targets. Here, we describe, using the methods of molecular biophysics, interactions of a series of biologically-active supramolecular cationic metallohelices with human telomeric RNA G-quadruplex. We demonstrate that the investigated metallohelices bind with a high affinity to human telomeric RNA G-quadruplex and that their binding selectivity considerably differs depending on the dimensions and overall shape of the metallohelices. Additionally, the investigated metallohelices inhibit DNA synthesis on the RNA template containing four repeats of the human telomeric sequence by stabilizing the RNA G-quadruplex structure. Collectively, the results of this study suggest that stabilization of RNA sequences capable of G-quadruplex formation by metallohelices investigated in this work might contribute to the mechanism of their biological activity.
- MeSH
- DNA chemistry metabolism MeSH
- G-Quadruplexes * MeSH
- Nucleic Acid Conformation MeSH
- Humans MeSH
- RNA chemistry metabolism MeSH
- Telomere metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA MeSH
- RNA MeSH
Guanine quadruplexes (G4s) are non-canonical nucleic acids structures common in important genomic regions. Parallel-stranded G4 folds are the most abundant, but their folding mechanism is not fully understood. Recent research highlighted that G4 DNA molecules fold via kinetic partitioning mechanism dominated by competition amongst diverse long-living G4 folds. The role of other intermediate species such as parallel G-triplexes and G-hairpins in the folding process has been a matter of debate. Here, we use standard and enhanced-sampling molecular dynamics simulations (total length of ∼0.9 ms) to study these potential folding intermediates. We suggest that parallel G-triplex per se is rather an unstable species that is in local equilibrium with a broad ensemble of triplex-like structures. The equilibrium is shifted to well-structured G-triplex by stacked aromatic ligand and to a lesser extent by flanking duplexes or nucleotides. Next, we study propeller loop formation in GGGAGGGAGGG, GGGAGGG and GGGTTAGGG sequences. We identify multiple folding pathways from different unfolded and misfolded structures leading towards an ensemble of intermediates called cross-like structures (cross-hairpins), thus providing atomistic level of description of the single-molecule folding events. In summary, the parallel G-triplex is a possible, but not mandatory short-living (transitory) intermediate in the folding of parallel-stranded G4.
- MeSH
- DNA chemistry genetics metabolism MeSH
- G-Quadruplexes * MeSH
- Guanine chemistry metabolism MeSH
- DNA, Single-Stranded chemistry genetics metabolism MeSH
- Kinetics MeSH
- Nucleic Acid Conformation * MeSH
- Humans MeSH
- Base Sequence MeSH
- Molecular Dynamics Simulation * MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA MeSH
- Guanine MeSH
- DNA, Single-Stranded MeSH
Molecular dynamics (MD) simulations became a leading tool for investigation of structural dynamics of nucleic acids. Despite recent efforts to improve the empirical potentials (force fields, ffs), RNA ffs have persisting deficiencies, which hamper their utilization in quantitatively accurate simulations. Previous studies have shown that at least two salient problems contribute to difficulties in the description of free-energy landscapes of small RNA motifs: (i) excessive stabilization of the unfolded single-stranded RNA ensemble by intramolecular base-phosphate and sugar-phosphate interactions and (ii) destabilization of the native folded state by underestimation of stability of base pairing. Here, we introduce a general ff term (gHBfix) that can selectively fine-tune nonbonding interaction terms in RNA ffs, in particular, the H bonds. The gHBfix potential affects the pairwise interactions between all possible pairs of the specific atom types, while all other interactions remain intact; i.e., it is not a structure-based model. In order to probe the ability of the gHBfix potential to refine the ff nonbonded terms, we performed an extensive set of folding simulations of RNA tetranucleotides and tetraloops. On the basis of these data, we propose particular gHBfix parameters to modify the AMBER RNA ff. The suggested parametrization significantly improves the agreement between experimental data and the simulation conformational ensembles, although our current ff version still remains far from being flawless. While attempts to tune the RNA ffs by conventional reparametrizations of dihedral potentials or nonbonded terms can lead to major undesired side effects, as we demonstrate for some recently published ffs, gHBfix has a clear promising potential to improve the ff performance while avoiding introduction of major new imbalances.
- MeSH
- RNA chemistry MeSH
- Molecular Dynamics Simulation * MeSH
- Hydrogen Bonding MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- RNA MeSH