Nejvíce citovaný článek - PubMed ID 30448349
The expansion of genes encoding soluble silk components in the greater wax moth, Galleria mellonella
Lepidopteran silk is a complex mixture of proteins, consisting mainly of fibroins and sericins. Sericins are a small family of highly divergent proteins that serve as adhesives and coatings for silk fibers. So far, five genes encoding sericin proteins have been identified in Bombyx mori. Having previously identified sericin protein 150 (SP150) as a major sericin-like protein in the cocoons of the pyralid moths Galleria mellonella and Ephestia kuehniella, we describe the identification of its homolog in B. mori. Our refined gene model shows that it consists of four exons and a long open reading frame with a conserved motif, CXCXCX, at the C-terminus, reminiscent of the structure observed in a class of mucin proteins. Notably, despite a similar expression pattern, both mRNA and protein levels of B. mori SP150 were significantly lower than those of its pyralid counterpart. We also discuss the synteny of homologous genes on corresponding chromosomes in different moth species and the possible phylogenetic relationships between SP150 and certain mucin-like proteins. Our results improve our understanding of silk structure and the evolutionary relationships between adhesion proteins in the silk of different lepidopteran species.
- Klíčová slova
- Galleria mellonella, CXCXCX, Mucin, SP150, Silk glands, Synteny,
- MeSH
- bourec * genetika metabolismus MeSH
- fylogeneze * MeSH
- hedvábí metabolismus genetika chemie MeSH
- hmyzí proteiny genetika metabolismus chemie MeSH
- sekvence aminokyselin MeSH
- sericiny * metabolismus genetika chemie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- hedvábí MeSH
- hmyzí proteiny MeSH
- sericiny * MeSH
Caddisfly larvae produce silk containing heavy and light fibroins, similar to the silk of Lepidoptera, for the construction of underwater structures. We analyzed the silk of Limnephilus lunatus belonging to the case-forming suborder Integripalpia. We analyzed the transcriptome, mapped the transcripts to a reference genome and identified over 80 proteins using proteomic methods, and checked the specificity of their expression. For comparison, we also analyzed the transcriptome and silk proteome of Limnephilus flavicornis. Our results show that fibroins and adhesives are produced together in the middle and posterior parts of the silk glands, while the anterior part produces enzymes and an unknown protein AT24. The number of silk proteins of L. lunatus far exceeds that of the web-spinning Plectrocnemia conspersa, a previously described species from the suborder Annulipalpia. Our results support the idea of increasing the structural complexity of silk in rigid case builders compared to trap web builders.
- Klíčová slova
- Limnephilus flavicornis, Plectrocnemia conspersa, Fibroin, Gene duplication, Hydrophobicity, Sericin,
- MeSH
- fibroiny genetika metabolismus chemie MeSH
- hedvábí * metabolismus chemie MeSH
- hmyz metabolismus genetika MeSH
- hmyzí proteiny genetika metabolismus MeSH
- proteom MeSH
- proteomika metody MeSH
- stanovení celkové genové exprese MeSH
- transkriptom MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Silk is a secretory product of numerous arthropods with remarkable mechanical properties. In this work, we present the complete sequences of the putative major silk proteins of E. kuehniella and compare them with those of G. mellonella, which belongs to the same moth family Pyralidae. To identify the silk genes of both species, we combined proteomic analysis of cocoon silk with a homology search in transcriptomes and genomic sequences to complement the information on both species. We analyzed structure of the candidate genes obtained, their expression specificity and their evolutionary relationships. We demonstrate that the silks of E. kuehniella and G. mellonella differ in their hydrophobicity and that the silk of E. kuehniella is highly hygroscopic. In our experiments, we show that the number of genes encoding sericins is higher in G. mellonella than in E. kuehniella. By analyzing the synteny of the chromosomal segment encoding sericin genes in both moth species, we found that the region encoding sericins is duplicated in G. mellonella. Finally, we present the complete primary structures of nine fibH genes and proteins from both families of the suborder Pyraloidea and discuss their specific and conserved features. This study provides a foundation for future research on the evolution of silk proteins and lays the groundwork for future detailed functional studies.
- Klíčová slova
- crambidae, mediterranean flour moth, mucin, pyralidae, synteny, wax moth,
- Publikační typ
- časopisecké články MeSH
Many lepidopteran species produce silk, cocoons, feeding tubes, or nests for protection from predators and parasites for caterpillars and pupae. Yet, the number of lepidopteran species whose silk composition has been studied in detail is very small, because the genes encoding the major structural silk proteins tend to be large and repetitive, making their assembly and sequence analysis difficult. Here we have analyzed the silk of Yponomeuta cagnagella, which represents one of the early diverging lineages of the ditrysian Lepidoptera thus improving the coverage of the order. To obtain a comprehensive list of the Y. cagnagella silk genes, we sequenced and assembled a draft genome using Oxford Nanopore and Illumina technologies. We used a silk-gland transcriptome and a silk proteome to identify major silk components and verified the tissue specificity of expression of individual genes. A detailed annotation of the major genes and their putative products, including their complete sequences and exon-intron structures is provided. The morphology of silk glands and fibers are also shown. This study fills an important gap in our growing understanding of the structure, evolution, and function of silk genes and provides genomic resources for future studies of the chemical ecology of Yponomeuta species.
Similar to Lepidoptera, the larvae of Trichoptera are also capable of producing silk. Plectrocnemia conspersa, a predatory species belonging to the suborder Annulipalpia, builds massive silken retreats with preycapturing nets. In this study, we describe the silk glands of P. conspersa and use the multi-omics methods to obtain a complete picture of the fiber composition. A combination of silk gland-specific transcriptome and proteomic analyses of the spun-out fibers yielded 27 significant candidates whose full-length sequences and gene structures were retrieved from the publicly available genome database. About one-third of the candidates were completely novel proteins for which there are no described homologs, including a group of five pseudofibroins, proteins with a composition similar to fibroin heavy chain. The rest were homologs of lepidopteran silk proteins, although some had a larger number of paralogs. On the other hand, P. conspersa fibers lacked some proteins that are regular components in moth silk. In summary, the multi-omics approach provides an opportunity to compare the overall composition of silk with other insect species. A sufficient number of such studies will make it possible to distinguish between the basic components of all silks and the proteins that represent the adaptation of the fibers for specific purposes or environments.
- Klíčová slova
- Trichoptera, adhesion, biomaterials, caddisfly, fibers, fibroin, mucin, zonadhesin,
- Publikační typ
- časopisecké články MeSH
Many lepidopteran larvae produce silk feeding shelters and cocoons to protect themselves and the developing pupa. As caterpillars evolved, the quality of the silk, shape of the cocoon, and techniques in forming and leaving the cocoon underwent a number of changes. The silk of Pseudoips prasinana has previously been studied using X-ray analysis and classified in the same category as that of Bombyx mori, suggesting that silks of both species have similar properties despite their considerable phylogenetic distance. In the present study, we examined P. prasinana silk using 'omics' technology, including silk gland RNA sequencing (RNA-seq) and a mass spectrometry-based proteomic analysis of cocoon proteins. We found that although the central repetitive amino acid sequences encoding crystalline domains of fibroin heavy chain molecules are almost identical in both species, the resulting fibers exhibit quite different mechanical properties. Our results suggest that these differences are most probably due to the higher content of fibrohexamerin and fibrohexamerin-like molecules in P. prasinana silk. Furthermore, we show that whilst P. prasinana cocoons are predominantly made of silk similar to that of other Lepidoptera, they also contain a second, minor silk type, which is present only at the escape valve.
- Klíčová slova
- Bena prasinana, Bombycidae, Nolidae, fibrohexamerins, phylogeny, transcriptomics,
- MeSH
- bourec klasifikace genetika metabolismus MeSH
- exokrinní žlázy metabolismus MeSH
- fibroiny chemie genetika MeSH
- fylogeneze MeSH
- molekulární evoluce * MeSH
- proteom genetika metabolismus MeSH
- transkriptom MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fibroiny MeSH
- proteom MeSH
Imaginal disc growth factors (IDGFs) are a small protein family found in insects. They are related to chitinases and implicated in multiple functions, including cell growth stimulation, antimicrobial activity, insect hemolymph clotting, and maintenance of the extracellular matrix. A number of new IDGFs have been found in several insect species and their detailed phylogenetic analysis provides a good basis for further functional studies. To achieve this goal, we sequenced Idgf cDNAs from several lepidopteran and trichopteran species and supplemented our data with sequences retrieved from public databases. A comparison of Idgf genes in different species showed that Diptera typically contain several Idgf paralogs with a simple exon-intron structure (2-3 exons), whereas lepidopteran Idgfs appear as a single copy per genome and contain a higher number of exons (around 9). Our results show that, while lepidopteran Idgfs, having single orthologs, are characterized by low divergence and stronger purifying selection over most of the molecule, the duplicated Idgf genes in Diptera, Idgf1 and Idgf4, exhibit signs of positive selection. This characterization of IDGF evolution provides, to our knowledge, the first information on the changes that formed these important molecules.
- Klíčová slova
- Drosophila, IDGF, chitinase, chitinase-like protein, phylogeny, positive selection,
- Publikační typ
- časopisecké články MeSH