Nejvíce citovaný článek - PubMed ID 30486342
Translation Stress Regulates Ribosome Synthesis and Cell Proliferation
Drug repurposing is a versatile strategy to improve current therapies. Disulfiram has long been used in the treatment of alcohol dependency and multiple clinical trials to evaluate its clinical value in oncology are ongoing. We have recently reported that the disulfiram metabolite diethyldithiocarbamate, when combined with copper (CuET), targets the NPL4 adapter of the p97VCP segregase to suppress the growth of a spectrum of cancer cell lines and xenograft models in vivo. CuET induces proteotoxic stress and genotoxic effects, however important issues concerning the full range of the CuET-evoked tumor cell phenotypes, their temporal order, and mechanistic basis have remained largely unexplored. Here, we have addressed these outstanding questions and show that in diverse human cancer cell models, CuET causes a very early translational arrest through the integrated stress response (ISR), later followed by features of nucleolar stress. Furthermore, we report that CuET entraps p53 in NPL4-rich aggregates leading to elevated p53 protein and its functional inhibition, consistent with the possibility of CuET-triggered cell death being p53-independent. Our transcriptomics profiling revealed activation of pro-survival adaptive pathways of ribosomal biogenesis (RiBi) and autophagy upon prolonged exposure to CuET, indicating potential feedback responses to CuET treatment. The latter concept was validated here by simultaneous pharmacological inhibition of RiBi and/or autophagy that further enhanced CuET's tumor cytotoxicity, using both cell culture and zebrafish in vivo preclinical models. Overall, these findings expand the mechanistic repertoire of CuET's anti-cancer activity, inform about the temporal order of responses and identify an unorthodox new mechanism of targeting p53. Our results are discussed in light of cancer-associated endogenous stresses as exploitable tumor vulnerabilities and may inspire future clinical applications of CuET in oncology, including combinatorial treatments and focus on potential advantages of using certain validated drug metabolites, rather than old, approved drugs with their, often complex, metabolic profiles.
- MeSH
- dánio pruhované metabolismus MeSH
- disulfiram * metabolismus MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nádorový supresorový protein p53 genetika metabolismus MeSH
- nádory * metabolismus MeSH
- ribozomy metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- disulfiram * MeSH
- nádorový supresorový protein p53 MeSH
Human cells are subjected to continuous challenges by different genotoxic stress attacks. DNA damage leads to erroneous mutations, which can alter the function of oncogenes or tumor suppressors, resulting in cancer development. To circumvent this, cells activate the DNA damage response (DDR), which mainly involves cell cycle regulation and DNA repair processes. The tumor suppressor p53 plays a pivotal role in the DDR by halting the cell cycle and facilitating the DNA repair processes. Various pathways and factors participating in the detection and repair of DNA have been described, including scores of RNA-binding proteins (RBPs) and RNAs. It has become increasingly clear that p53's role is multitasking, and p53 mRNA regulation plays a prominent part in the DDR. This review is aimed at covering the p53 RNA metabolism linked to the DDR and highlights the recent findings.
- Klíčová slova
- ATM kinase, DNA damage response, MDM2, RNA metabolism, RNA-binding proteins, mRNA translation, p53,
- MeSH
- lidé MeSH
- messenger RNA metabolismus MeSH
- mutace MeSH
- nádorový supresorový protein p53 genetika metabolismus MeSH
- nepřekládané oblasti MeSH
- oprava DNA * fyziologie MeSH
- poškození DNA * MeSH
- proteiny vázající RNA genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- messenger RNA MeSH
- nádorový supresorový protein p53 MeSH
- nepřekládané oblasti MeSH
- proteiny vázající RNA MeSH
Virus-host interactions form an essential part of every aspect of life, and this review is aimed at looking at the balance between the host and persistent viruses with a focus on the immune system. The virus-host interaction is like a cat-and-mouse game and viruses have developed ingenious mechanisms to manipulate cellular pathways, most notably the major histocompatibility (MHC) class I pathway, to reside within infected cell while evading detection and destruction by the immune system. However, some of the signals sensing and responding to viral infection are derived from viruses and the fact that certain viruses can prevent the infection of others, highlights a more complex coexistence between the host and the viral microbiota. Viral immune evasion strategies also illustrate that processes whereby cells detect and present non-self genetic material to the immune system are interlinked with other cellular pathways. Immune evasion is a target also for cancer cells and a more detailed look at the interfaces between viral factors and components of the MHC class I peptide-loading complex indicates that these interfaces are also targets for cancer mutations. In terms of the immune checkpoint, however, viral and cancer strategies appear different.
- Klíčová slova
- cancer immune evasion, major histocompatibility (MHC) class I, viral immune evasion, viral persistence, virus–host interactions,
- MeSH
- imunitní únik * MeSH
- lidé MeSH
- MHC antigeny I. třídy imunologie MeSH
- nádory imunologie MeSH
- virové nemoci imunologie virologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- MHC antigeny I. třídy MeSH
Cell growth requires a high level of protein synthesis and oncogenic pathways stimulate cell proliferation and ribosome biogenesis. Less is known about how cells respond to dysfunctional mRNA translation and how this feeds back into growth regulatory pathways. The Epstein-Barr virus (EBV)-encoded EBNA1 causes mRNA translation stress in cis that activates PI3Kδ. This leads to the stabilization of MDM2, induces MDM2's binding to the E2F1 mRNA and promotes E2F1 translation. The MDM2 serine 166 regulates the interaction with the E2F1 mRNA and deletion of MDM2 C-terminal RING domain results in a constitutive E2F1 mRNA binding. Phosphorylation on serine 395 following DNA damage instead regulates p53 mRNA binding to its RING domain and prevents the E2F1 mRNA interaction. The p14Arf tumour suppressor binds MDM2 and in addition to preventing degradation of the p53 protein it also prevents the E2F1 mRNA interaction. The data illustrate how two MDM2 domains selectively bind specific mRNAs in response to cellular conditions to promote, or suppress, cell growth and how p14Arf coordinates MDM2's activity towards p53 and E2F1. The data also show how EBV via EBNA1-induced mRNA translation stress targets the E2F1 and the MDM2 - p53 pathway.
- MeSH
- buněčný cyklus genetika MeSH
- fosforylace genetika MeSH
- karcinogeneze genetika MeSH
- lidé MeSH
- messenger RNA genetika MeSH
- nádorový supresorový protein p14ARF genetika MeSH
- nádorový supresorový protein p53 genetika MeSH
- nádory genetika virologie MeSH
- onkogeny genetika MeSH
- poškození DNA genetika MeSH
- proliferace buněk genetika MeSH
- proteinové domény genetika MeSH
- protoonkogenní proteiny c-mdm2 genetika MeSH
- RRM proteiny genetika MeSH
- transkripční faktor E2F1 genetika MeSH
- tumor supresorové geny MeSH
- virus Epsteinův-Barrové genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- E2F1 protein, human MeSH Prohlížeč
- MDM2 protein, human MeSH Prohlížeč
- messenger RNA MeSH
- nádorový supresorový protein p14ARF MeSH
- nádorový supresorový protein p53 MeSH
- protoonkogenní proteiny c-mdm2 MeSH
- RRM proteiny MeSH
- TP53 protein, human MeSH Prohlížeč
- transkripční faktor E2F1 MeSH