Nejvíce citovaný článek - PubMed ID 30530801
Bruton tyrosine kinase (BTK) inhibitor therapy induces peripheral blood lymphocytosis in chronic lymphocytic leukemia (CLL), which lasts for several months. It remains unclear whether nongenetic adaptation mechanisms exist, allowing CLL cells' survival during BTK inhibitor-induced lymphocytosis and/or playing a role in therapy resistance. We show that in approximately 70% of CLL cases, ibrutinib treatment in vivo increases Akt activity above pretherapy levels within several weeks, leading to compensatory CLL cell survival and a more prominent lymphocytosis on therapy. Ibrutinib-induced Akt phosphorylation (pAktS473) is caused by the upregulation of Forkhead box protein O1 (FoxO1) transcription factor, which induces expression of Rictor, an assembly protein for the mTORC2 protein complex that directly phosphorylates Akt at serine 473 (S473). Knockout or inhibition of FoxO1 or Rictor led to a dramatic decrease in Akt phosphorylation and growth disadvantage for malignant B cells in the presence of ibrutinib (or PI3K inhibitor idelalisib) in vitro and in vivo. The FoxO1/Rictor/pAktS473 axis represents an early nongenetic adaptation to B cell receptor (BCR) inhibitor therapy not requiring PI3Kδ or BTK kinase activity. We further demonstrate that FoxO1 can be targeted therapeutically and its inhibition induces CLL cells' apoptosis alone or in combination with BTK inhibitors (ibrutinib, acalabrutinib, pirtobrutinib) and blocks their proliferation triggered by T cell factors (CD40L, IL-4, and IL-21).
- Klíčová slova
- Drug therapy, Hematology, Leukemias, Oncology, Signal transduction,
- MeSH
- adenin * analogy a deriváty farmakologie MeSH
- chronická lymfatická leukemie * farmakoterapie metabolismus genetika patologie MeSH
- forkhead box protein O1 * metabolismus genetika MeSH
- fosforylace MeSH
- lidé MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádorové proteiny metabolismus genetika MeSH
- piperidiny * farmakologie MeSH
- protein RICTOR * genetika metabolismus MeSH
- proteinkinasa BTK metabolismus genetika antagonisté a inhibitory MeSH
- protoonkogenní proteiny c-akt * metabolismus genetika MeSH
- pyrazoly * farmakologie MeSH
- pyrimidiny * farmakologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adenin * MeSH
- BTK protein, human MeSH Prohlížeč
- forkhead box protein O1 * MeSH
- FOXO1 protein, human MeSH Prohlížeč
- ibrutinib MeSH Prohlížeč
- nádorové proteiny MeSH
- piperidiny * MeSH
- protein RICTOR * MeSH
- proteinkinasa BTK MeSH
- protoonkogenní proteiny c-akt * MeSH
- pyrazoly * MeSH
- pyrimidiny * MeSH
INTRODUCTION: The impact of chemoimmunotherapy (CIT) on immunoglobulin (Ig) quantities in patients with chronic lymphocytic leukemia (CLL) has not been extensively studied. METHODS: We analyzed Ig levels in 45 stable patients with indolent CLL (without indication for treatment) and 87 patients with progressive disease before first-line treatment. Fifty-five patients were evaluated again after the treatment with CIT. RESULTS: We observed significantly lower levels of all Ig classes and subclasses in patients with progressive disease compared to patients with indolent disease. After treatment, median IgA increased from 0.59 g/L to 0.74 g/L (p = 0.0031). In stable patients, lower IgA2 was associated with shorter time to first treatment, although it did not reach statistical significance (p = 0.056). Shorter overall survival was observed in patients with progressive disease and lower IgG2 (p = 0.043). Surprisingly, among the patients with progressive CLL, unmutated IGHV genes were associated with higher levels of IgG, IgG1 and IgM, while TP53 mutation and/or 17p deletion were associated with higher levels of IgA and IgA1. CONCLUSIONS: CIT may lead to increase in IgA levels. Hypogammaglobulinemia is more common in patients with progressive CLL and unmutated IGHV or TP53 dysfunction.
- Klíčová slova
- CLL, chemoimmunotherapy, immunoglobulin, immunosuppression, infections, prognosis,
- MeSH
- chronická lymfatická leukemie * farmakoterapie krev imunologie mortalita MeSH
- dospělí MeSH
- imunoglobulin A * krev MeSH
- imunoterapie metody MeSH
- lidé středního věku MeSH
- lidé MeSH
- progrese nemoci MeSH
- protokoly protinádorové kombinované chemoterapie terapeutické užití MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- imunoglobulin A * MeSH
- Klíčová slova
- BCL2 (B-cell lymphoma 2), BTK - Bruton’s tyrosine kinase, COVID - 19, TP53, chronic lymphocytic leukemia (CLL), definition, high-risk, risk factor,
- Publikační typ
- časopisecké články MeSH
iLLUMINATE is a randomized, open-label phase III study of ibrutinib plus obinutuzumab (n=113) versus chlorambucil plus obinutuzumab (n=116) as first-line therapy for patients with chronic lymphocytic leukemia or small lymphocytic lymphoma. Eligible patients were aged ≥65 years, or <65 years with coexisting conditions. Patients received oral ibrutinib 420 mg once daily until disease progression or unacceptable toxicity or six cycles of oral chlorambucil, each in combination with six cycles of intravenous obinutuzumab. After a median follow-up of 45 months (range, 0.2-52), median progression-free survival continued to be significantly longer in the ibrutinib plus obinutuzumab arm than in the chlorambucil plus obinutuzumab arm (median not reached versus 22 months; hazard ratio=0.25; 95% confidence interval: 0.16-0.39; P<0.0001). The best overall rate of undetectable minimal residual disease (<0.01% by flow cytometry) remained higher with ibrutinib plus obinutuzumab (38%) than with chlorambucil plus obinutuzumab (25%). With a median treatment duration of 42 months, 13 months longer than the primary analysis, no new safety signals were identified for ibrutinib. As is typical for ibrutinib-based regimens, common grade ≥3 adverse events were most prevalent in the first 6 months of ibrutinib plus obinutuzumab treatment and generally decreased over time, except for hypertension. In this final analysis with up to 52 months of follow-up (median 45 months), ibrutinib plus obinutuzumab showed sustained clinical benefit, in terms of progression- free survival, in first-line treatment of chronic lymphocytic leukemia, including in patients with high-risk features. ClinicalTrials.gov identifier: NCT02264574.
- MeSH
- adenin analogy a deriváty MeSH
- chlorambucil * MeSH
- chronická lymfatická leukemie * diagnóza farmakoterapie MeSH
- humanizované monoklonální protilátky MeSH
- lidé MeSH
- piperidiny MeSH
- protokoly protinádorové kombinované chemoterapie škodlivé účinky MeSH
- pyrazoly škodlivé účinky MeSH
- pyrimidiny MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- klinické zkoušky, fáze III MeSH
- práce podpořená grantem MeSH
- randomizované kontrolované studie MeSH
- Názvy látek
- adenin MeSH
- chlorambucil * MeSH
- humanizované monoklonální protilátky MeSH
- ibrutinib MeSH Prohlížeč
- obinutuzumab MeSH Prohlížeč
- piperidiny MeSH
- pyrazoly MeSH
- pyrimidiny MeSH
- MeSH
- antigeny CD20 metabolismus MeSH
- chinazolinony farmakologie terapeutické užití MeSH
- chronická lymfatická leukemie * farmakoterapie MeSH
- interleukin-4 MeSH
- lidé MeSH
- protinádorové látky * terapeutické užití MeSH
- puriny farmakologie terapeutické užití MeSH
- transkripční faktor STAT6 MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- dopisy MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigeny CD20 MeSH
- chinazolinony MeSH
- idelalisib MeSH Prohlížeč
- interleukin-4 MeSH
- protinádorové látky * MeSH
- puriny MeSH
- STAT6 protein, human MeSH Prohlížeč
- transkripční faktor STAT6 MeSH
Anti-CD20 antibody treatments, such as obinutuzumab, have been associated with infusion-related reactions (IRRs). In the phase 3 iLLUMINATE study of ibrutinib-obinutuzumab versus chlorambucil-obinutuzumab in first-line chronic lymphocytic leukemia/small lymphocytic lymphoma, IRRs were substantially reduced with ibrutinib-obinutuzumab versus chlorambucil-obinutuzumab. We prospectively analyzed inflammatory cytokines to evaluate the impact of ibrutinib on circulating cytokine levels following obinutuzumab infusion. In iLLUMINATE, ibrutinib or chlorambucil was given approximately 30-120 min before the first obinutuzumab infusion. Cytokines evaluated were IFNγ, IL-6, IL-8, IL-10, IL-18, MCP-1, MIP-1α, MIP-1β, and TNFα. Changes in peak cytokine levels from baseline (immediately before obinutuzumab) to post-obinutuzumab infusion were compared between arms and between patients with versus without IRRs using Wilcoxon rank sum test. Of 228 treated patients, 95 on ibrutinib-obinutuzumab (15 with IRRs, 80 without) and 88 on chlorambucil-obinutuzumab (45 with IRRs, 43 without) with cytokine data were included. Irrespective of IRR occurrence, median increase in cytokines was lower with ibrutinib-obinutuzumab versus chlorambucil-obinutuzumab for all cytokines (P < 0.01) except MIP-1β. Across treatment arms, post-obinutuzumab median increase in all cytokines except MIP-1β was greater in patients with versus without IRRs (P < 0.001). IL-6 and IL-8 elevations were associated with IRRs in both treatment arms. Among patients with IRRs, those receiving ibrutinib-obinutuzumab had lower post-obinutuzumab increases in IL-6, IL-8, IL-10, and MCP-1 (P < 0.04) than patients receiving chlorambucil-obinutuzumab. For patients in the ibrutinib-treatment arm, we observed a reduction in both the rate of clinically apparent IRRs and the levels of IRR-related cytokines and chemokines. This observation supports an immunomodulatory mechanism of action for ibrutinib. Clinical Trial Registration: NCT02264574.
- Klíčová slova
- Cytokines, Ibrutinib, Infusion-related reactions, Obinutuzumab,
- MeSH
- adenin aplikace a dávkování analogy a deriváty MeSH
- chlorambucil aplikace a dávkování MeSH
- chronická lymfatická leukemie krev farmakoterapie MeSH
- cytokiny krev MeSH
- dospělí MeSH
- humanizované monoklonální protilátky aplikace a dávkování škodlivé účinky MeSH
- intravenózní infuze MeSH
- lidé středního věku MeSH
- lidé MeSH
- piperidiny aplikace a dávkování MeSH
- premedikace * MeSH
- prospektivní studie MeSH
- protokoly protinádorové kombinované chemoterapie terapeutické užití MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- klinické zkoušky, fáze III MeSH
- multicentrická studie MeSH
- randomizované kontrolované studie MeSH
- srovnávací studie MeSH
- Názvy látek
- adenin MeSH
- chlorambucil MeSH
- cytokiny MeSH
- humanizované monoklonální protilátky MeSH
- ibrutinib MeSH Prohlížeč
- obinutuzumab MeSH Prohlížeč
- piperidiny MeSH
The paradigm of first-line treatment of chronic lymphocytic leukaemia (CLL) is currently undergoing a radical change. On the basis of several randomised phase III trials showing prolongation of progression-free survival, chemoimmunotherapy is being replaced by treatment based on novel, orally available targeted inhibitors such as Bruton tyrosine kinase inhibitors ibrutinib and acalabrutinib or bcl-2 inhibitor venetoclax. However, the use of these agents may be associated with other disadvantages. First, with the exception of one trial in younger/fit patients, no studies have so far demonstrated benefit regarding the ultimate endpoint of overall survival. Second, oral inhibitors are extremely expensive and thus currently unavailable due to the absence of reimbursement in some countries. Third, treatment with ibrutinib and acalabrutinib necessitates long-term administration until progression; this may be associated with accumulation of late side effects, problems with patient compliance, and selection of resistant clones. Therefore, the identification of a subset of patients who could benefit from chemoimmunotherapy would be ideal. Current data suggest that patients with the mutated variable region of the immunoglobulin heavy chain (IGHV) achieve fairly durable remissions, especially when treated with fludarabine, cyclophosphamide, and rituximab (FCR) regimen. This review discusses current options for treatment-naïve patients with CLL.
- Klíčová slova
- acalabrutinib, chemoimmunotherapy, chronic lymphocytic leukaemia, direct inhibitors, ibrutinib, obinutuzumab, prognosis, rituximab, venetoclax,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The approval of BTK and PI3K inhibitors (ibrutinib, idelalisib) represents a revolution in the therapy of B cell malignancies such as chronic lymphocytic leukemia (CLL), mantle-cell lymphoma (MCL), diffuse large B cell lymphoma (DLBCL), follicular lymphoma (FL), or Waldenström's macroglobulinemia (WM). However, these "BCR inhibitors" function by interfering with B cell pathophysiology in a more complex way than anticipated, and resistance develops through multiple mechanisms. In ibrutinib treated patients, the most commonly described resistance-mechanism is a mutation in BTK itself, which prevents the covalent binding of ibrutinib, or a mutation in PLCG2, which acts to bypass the dependency on BTK at the BCR signalosome. However, additional genetic aberrations leading to resistance are being described (such as mutations in the CARD11, CCND1, BIRC3, TRAF2, TRAF3, TNFAIP3, loss of chromosomal region 6q or 8p, a gain of Toll-like receptor (TLR)/MYD88 signaling or gain of 2p chromosomal region). Furthermore, relative resistance to BTK inhibitors can be caused by non-genetic adaptive mechanisms leading to compensatory pro-survival pathway activation. For instance, PI3K/mTOR/Akt, NFkB and MAPK activation, BCL2, MYC, and XPO1 upregulation or PTEN downregulation lead to B cell survival despite BTK inhibition. Resistance could also arise from activating microenvironmental pathways such as chemokine or integrin signaling via CXCR4 or VLA4 upregulation, respectively. Defining these compensatory pro-survival mechanisms can help to develop novel therapeutic combinations of BTK inhibitors with other inhibitors (such as BH3-mimetic venetoclax, XPO1 inhibitor selinexor, mTOR, or MEK inhibitors). The mechanisms of resistance to PI3K inhibitors remain relatively unclear, but some studies point to MAPK signaling upregulation via both genetic and non-genetic changes, which could be co-targeted therapeutically. Alternatively, drugs mimicking the BTK/PI3K inhibition effect can be used to prevent adhesion and/or malignant B cell migration (chemokine and integrin inhibitors) or to block the pro-proliferative T cell signals in the microenvironment (such as IL4/STAT signaling inhibitors). Here we review the genetic and non-genetic mechanisms of resistance and adaptation to the first generation of BTK and PI3K inhibitors (ibrutinib and idelalisib, respectively), and discuss possible combinatorial therapeutic strategies to overcome resistance or to increase clinical efficacy.
- Klíčová slova
- B cell malignancies, B cell receptor, BCR inhibitor, adaptation, ibrutinib, resistance, targeted therapy,
- Publikační typ
- časopisecké články MeSH
The introduction of anti-CD20 monoclonal antibodies such as rituximab, ofatumumab, or obinutuzumab improved the therapy of B-cell malignancies even though the precise physiological role and regulation of CD20 remains unclear. Furthermore, CD20 expression is highly variable between different B-cell malignancies, patients with the same malignancy, and even between intraclonal subpopulations in an individual patient. Several epigenetic (EZH2, HDAC1/2, HDAC1/4, HDAC6, complex Sin3A-HDAC1) and transcription factors (USF, OCT1/2, PU.1, PiP, ELK1, ETS1, SP1, NFκB, FOXO1, CREM, SMAD2/3) regulating CD20 expression (encoded by MS4A1) have been characterized. CD20 is induced in the context of microenvironmental interactions by CXCR4/SDF1 (CXCL12) chemokine signaling and the molecular function of CD20 has been linked to the signaling propensity of B-cell receptor (BCR). CD20 has also been shown to interact with multiple other surface proteins on B cells (such as CD40, MHCII, CD53, CD81, CD82, and CBP). Current efforts to combine anti-CD20 monoclonal antibodies with BCR signaling inhibitors targeting BTK or PI3K (ibrutinib, acalabrutinib, idelalisib, duvelisib) or BH3-mimetics (venetoclax) lead to the necessity to better understand both the mechanisms of regulation and the biological functions of CD20. This is underscored by the observation that CD20 is decreased in response to the "BCR inhibitor" ibrutinib which largely prevents its successful combination with rituximab. Several small molecules (such as histone deacetylase inhibitors, DNA methyl-transferase inhibitors, aurora kinase A/B inhibitors, farnesyltransferase inhibitors, FOXO1 inhibitors, and bryostatin-1) are being tested to upregulate cell-surface CD20 levels and increase the efficacy of anti-CD20 monoclonal antibodies. Herein, we review the current understanding of CD20 function, and the mechanisms of its regulation in normal and malignant B cells, highlighting the therapeutic implications.
- MeSH
- antigeny CD20 * MeSH
- B-lymfocyty MeSH
- chronická lymfatická leukemie * MeSH
- lidé MeSH
- monoklonální protilátky MeSH
- pyrimidiny MeSH
- rituximab MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- antigeny CD20 * MeSH
- monoklonální protilátky MeSH
- pyrimidiny MeSH
- rituximab MeSH