Nejvíce citovaný článek - PubMed ID 30554462
Soil organic carbon stability in forests: Distinct effects of tree species identity and traits
Much research focuses on increasing carbon storage in mineral-associated organic matter (MAOM), in which carbon may persist for centuries to millennia. However, MAOM-targeted management is insufficient because the formation pathways of persistent soil organic matter are diverse and vary with environmental conditions. Effective management must also consider particulate organic matter (POM). In many soils, there is potential for enlarging POM pools, POM can persist over long time scales, and POM can be a direct precursor of MAOM. We present a framework for context-dependent management strategies that recognizes soils as complex systems in which environmental conditions constrain POM and MAOM formation.
Microbial necromass is a central component of soil organic matter (SOM), whose management may be essential in mitigating atmospheric CO2 concentrations and climate change. Current consensus regards the magnitude of microbial necromass production to be heavily dependent on the carbon use efficiency of microorganisms, which is strongly influenced by the quality of the organic matter inputs these organisms feed on. However, recent concepts neglect agents relevant in many soils: earthworms. We argue that the activity of earthworms accelerates the formation of microbial necromass stabilized in aggregates and organo-mineral associations and reduces the relevance of the quality of pre-existing organic matter in this process. Earthworms achieve this through the creation of transient hotspots (casts) characterized by elevated contents of bioavailable substrate and the efficient build-up and quick turnover of microbial biomass, thus converting SOM not mineralized in this process into a state more resistant against external disturbances, such as climate change. Promoting the abundance of earthworms may, therefore, be considered a central component of management strategies that aim to accelerate the formation of stabilized microbial necromass in wide locations of the soil commonly not considered hotspots of microbial SOM formation.
- Klíčová slova
- aggregates, carbon sequestration, casts, concept, hotspot, organo-mineral associations, substrate quality,
- MeSH
- biomasa MeSH
- Oligochaeta * MeSH
- půda * chemie MeSH
- půdní mikrobiologie MeSH
- uhlík chemie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- půda * MeSH
- uhlík MeSH