Nejvíce citovaný článek - PubMed ID 30678275
Metformin Increases Proliferative Activity and Viability of Multipotent Stromal Stem Cells Isolated from Adipose Tissue Derived from Horses with Equine Metabolic Syndrome
The β-lactoglobulin (β-LG) was previously characterized as a mild antioxidant modulating cell viability. However, its biological action regarding endometrial stromal cell cytophysiology and function has never been considered. In this study, we investigated the influence of β-LG on the cellular status of equine endometrial progenitor cells under oxidative stress. The study showed that β-LG decreased the intracellular accumulation of reactive oxygen species, simultaneously ameliorating cell viability and exerting an anti-apoptotic effect. However, at the transcriptional level, the reduced mRNA expression of pro-apoptotic factors (i.e. BAX and BAD) was accompanied by decreased expression of mRNA for anti-apoptotic BCL-2 and genes coding antioxidant enzymes (CAT, SOD-1, GPx). Still, we have also noted the positive effect of β-LG on the expression profile of transcripts involved in endometrial viability and receptivity, including ITGB1, ENPP3, TUNAR and miR-19b-3p. Finally, the expression of master factors of endometrial decidualization, namely prolactin and IGFBP1, was increased in response to β-LG, while non-coding RNAs (ncRNAs), that is lncRNA MALAT1 and miR-200b-3p, were upregulated. Our findings indicate a novel potential role of β-LG as a molecule regulating endometrial tissue functionality, promoting viability and normalizing the oxidative status of endometrial progenitor cells. The possible mechanism of β-LG action includes the activation of ncRNAs essential for tissue regeneration, such as lncRNA MALAT-1/TUNAR and miR-19b-3p/miR-200b-3p.
- Klíčová slova
- endometrium, non-coding RNA, progenitor cells, β-lactoglobulin,
- MeSH
- antioxidancia MeSH
- kmenové buňky metabolismus MeSH
- koně genetika MeSH
- laktoglobuliny MeSH
- messenger RNA genetika metabolismus MeSH
- mikro RNA * genetika metabolismus MeSH
- RNA dlouhá nekódující * genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antioxidancia MeSH
- laktoglobuliny MeSH
- messenger RNA MeSH
- mikro RNA * MeSH
- RNA dlouhá nekódující * MeSH
The study aimed to investigate the influence of obesity on cellular features of equine endometrial progenitor cells (Eca EPCs), including viability, proliferation capacity, mitochondrial metabolism, and oxidative homeostasis. Eca EPCs derived from non-obese (non-OB) and obese (OB) mares were characterized by cellular phenotype and multipotency. Obesity-induced changes in the activity of Eca EPCs include the decline of their proliferative activity, clonogenic potential, mitochondrial metabolism, and enhanced oxidative stress. Eca EPCs isolated from obese mares were characterized by an increased occurrence of early apoptosis, loss of mitochondrial dynamics, and senescence-associated phenotype. Attenuated metabolism of Eca EPCs OB was related to increased expression of pro-apoptotic markers (CASP9, BAX, P53, P21), enhanced expression of OPN, PI3K, and AKT, simultaneously with decreased signaling stabilizing cellular homeostasis (including mitofusin, SIRT1, FOXP3). Obesity alters functional features and the self-renewal potential of endometrial progenitor cells. The impaired cytophysiology of progenitor cells from obese endometrium predicts lower regenerative capacity if used as autologous transplants.
- Klíčová slova
- cellular metabolism, endometrial progenitor cells, obesity, self-renewal potential,
- MeSH
- endometrium metabolismus MeSH
- endoteliální progenitorové buňky * metabolismus MeSH
- fenotyp MeSH
- kmenové buňky metabolismus MeSH
- koně MeSH
- obezita metabolismus MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
MiR-21 is being gradually more and more recognized as a molecule regulating bone tissue homeostasis. However, its function is not fully understood due to the dual role of miR-21 on bone-forming and bone-resorbing cells. In this study, we investigated the impact of miR-21 inhibition on pre-osteoblastic cells differentiation and paracrine signaling towards pre-osteoclasts using indirect co-culture model of mouse pre-osteoblast (MC3T3) and pre-osteoclast (4B12) cell lines. The inhibition of miR-21 in MC3T3 cells (MC3T3inh21) modulated expression of genes encoding osteogenic markers including collagen type I (Coll-1), osteocalcin (Ocl), osteopontin (Opn), and runt-related transcription factor 2 (Runx-2). Inhibition of miR-21 in osteogenic cultures of MC3T3 also inflected the synthesis of OPN protein which is essential for proper mineralization of extracellular matrix (ECM) and anchoring osteoclasts to the bones. Furthermore, it was shown that in osteoblasts miR-21 regulates expression of factors that are vital for survival of pre-osteoclast, such as receptor activator of nuclear factor κB ligand (RANKL). The pre-osteoclast cultured with MC3T3inh21 cells was characterized by lowered expression of several markers associated with osteoclasts' differentiation, foremost tartrate-resistant acid phosphatase (Trap) but also receptor activator of nuclear factor-κB ligand (Rank), cathepsin K (Ctsk), carbonic anhydrase II (CaII), and matrix metalloproteinase (Mmp-9). Collectively, our data indicate that the inhibition of miR-21 in MC3T3 cells impairs the differentiation and ECM mineralization as well as influences paracrine signaling leading to decreased viability of pre-osteoclasts.
- Klíčová slova
- differentiation, miR-21-5p, osteoblasts, osteoclasts, osteogenesis, precursor cells,
- MeSH
- buněčná diferenciace genetika MeSH
- buněčné linie MeSH
- extracelulární matrix metabolismus MeSH
- kokultivační techniky MeSH
- kyselá fosfatasa rezistentní k tartarátu metabolismus MeSH
- messenger RNA genetika MeSH
- mikro RNA genetika metabolismus MeSH
- myši MeSH
- osteoblasty metabolismus MeSH
- osteogeneze genetika MeSH
- osteoklasty metabolismus MeSH
- osteopontin genetika metabolismus MeSH
- parakrinní signalizace genetika MeSH
- protein PEBP2alfaA genetika metabolismus MeSH
- resorpce kosti metabolismus MeSH
- signální transdukce genetika MeSH
- transfekce MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- Acp5 protein, mouse MeSH Prohlížeč
- kyselá fosfatasa rezistentní k tartarátu MeSH
- messenger RNA MeSH
- mikro RNA MeSH
- MIRN21 microRNA, mouse MeSH Prohlížeč
- osteopontin MeSH
- protein PEBP2alfaA MeSH
- Runx2 protein, mouse MeSH Prohlížeč
- Spp1 protein, mouse MeSH Prohlížeč