Most cited article - PubMed ID 30754724
The Self-Assembly of Lignin and Its Application in Nanoparticle Synthesis: A Short Review
Cellulose degradation is a critical process in soil ecosystems, playing a vital role in nutrient cycling and organic matter decomposition. Enzymatic degradation of cellulosic biomass is the most sustainable and green method of producing liquid biofuel. It has gained intensive research interest with future perspective as the majority of terrestrial lignocellulose biomass has a great potential to be used as a source of bioenergy. However, the recalcitrant nature of lignocellulose limits its use as a source of energy. Noteworthy enough, enzymatic conversion of cellulose biomass could be a leading future technology. Fungal enzymes play a central role in cellulose degradation. Our understanding of fungal cellulases has substantially redirected in the past few years with the discovery of a new class of enzymes and Cellulosome. Efforts have been made from time to time to develop an economically viable method of cellulose degradation. This review provides insights into the current state of knowledge regarding cellulose degradation in soil and identifies areas where further research is needed.
- Keywords
- Biofuel, Cellulases, Cellulose degradation, Lignocellulose,
- Publication type
- Journal Article MeSH
Lignin, the term commonly used in literature, represents a group of heterogeneous aromatic compounds of plant origin. Protolignin or lignin in the cell wall is entirely different from the commercially available technical lignin due to changes during the delignification process. In this paper, we assess the status of lignin valorization in terms of commercial products. We start with existing knowledge of the lignin/protolignin structure in its native form and move to the technical lignin from various sources. Special attention is given to the patents and lignin-based commercial products. We observed that the technical lignin-based commercial products utilize coarse properties of the technical lignin in marketed formulations. Additionally, the general principles of polymers chemistry and self-assembly are difficult to apply in lignin-based nanotechnology, and lignin-centric investigations must be carried out. The alternate upcoming approach is to develop lignin-centric or lignin first bio-refineries for high-value applications; however, that brings its own technological challenges. The assessment of the gap between lab-scale applications and lignin-based commercial products delineates the challenges lignin nanoparticles-based technologies must meet to be a commercially viable alternative.
- Keywords
- bioeconomy, lignin, lignin nanoparticles, self-assembly, technical lignin,
- MeSH
- Algorithms MeSH
- Biotechnology * economics methods trends MeSH
- Economics * trends MeSH
- Hydrolysis MeSH
- Lignin analogs & derivatives chemistry classification isolation & purification MeSH
- Plants chemistry MeSH
- Models, Theoretical MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Lignin MeSH
- lignosulfuric acid MeSH Browser
Wood-based cellulose nanofibrils (CNF) offer an excellent scaffold for drug-delivery formulation development. However, toxicity and haemocompatibility of the drug carrier is always an important issue. In this study, toxicity-related issues of CNF were addressed. Different doses of CNF were orally administered to Drosophila and different tests like the developmental cycle, trypan blue exclusion assay, larva crawling assay, thermal sensitivity assay, cold sensitivity assay, larval light preference test, climbing behaviour, nitroblue tetrazolium (NBT) reduction assay, adult phenotype, and adult weight were conducted to observe the impact on its development and behaviour. A haemocompatibility assay was done on the blood taken from healthy Wistar rats. In Drosophila, the abnormalities in larval development and behaviour were observed in the behavioural assays. However, the cytotoxic effect could not be confirmed by the gut staining and level of reactive oxygen species. The larvae developed into an adult without any abnormality in the phenotype. The CNF did cause loss of weight in the adult flies and did not cause much toxicity within the body since there was no phenotypic defect. Hemolysis data also suggested that CNF was safe at lower doses, as the data was well within acceptable limits. All these results suggest that cellulose nanofibres have no significant cytotoxic effects on Drosophila. However, the developmental and behavioural abnormalities suggest that CNF may act as a behavioural teratogen.
- Keywords
- CNF toxicity, Drosophila melanogaster, haemocompatibility, wood-based CNF,
- MeSH
- Biocompatible Materials chemistry toxicity MeSH
- Cellulose chemistry toxicity MeSH
- Behavior, Animal drug effects MeSH
- Wood chemistry MeSH
- Drosophila melanogaster drug effects MeSH
- Nanofibers chemistry MeSH
- Dose-Response Relationship, Drug MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Biocompatible Materials MeSH
- Cellulose MeSH