Most cited article - PubMed ID 30814736
A radical switch in clonality reveals a stem cell niche in the epiphyseal growth plate
The development of craniofacial skeletal structures is fascinatingly complex and elucidation of the underlying mechanisms will not only provide novel scientific insights, but also help develop more effective clinical approaches to the treatment and/or prevention of the numerous congenital craniofacial malformations. To this end, we performed a genome-wide analysis of RNA transcription from non-coding regulatory elements by CAGE-sequencing of the facial mesenchyme of human embryos and cross-checked the active enhancers thus identified against genes, identified by GWAS for the normal range human facial appearance. Among the identified active cis-enhancers, several belonged to the components of the PI3/AKT/mTORC1/autophagy pathway. To assess the functional role of this pathway, we manipulated it both genetically and pharmacologically in mice and zebrafish. These experiments revealed that mTORC1 signaling modulates craniofacial shaping at the stage of skeletal mesenchymal condensations, with subsequent fine-tuning during clonal intercalation. This ability of mTORC1 pathway to modulate facial shaping, along with its evolutionary conservation and ability to sense external stimuli, in particular dietary amino acids, indicate that the mTORC1 pathway may play a role in facial phenotypic plasticity. Indeed, the level of protein in the diet of pregnant female mice influenced the activity of mTORC1 in fetal craniofacial structures and altered the size of skeletogenic clones, thus exerting an impact on the local geometry and craniofacial shaping. Overall, our findings indicate that the mTORC1 signaling pathway is involved in the effect of environmental conditions on the shaping of craniofacial structures.
- MeSH
- Zebrafish * MeSH
- Diet MeSH
- Humans MeSH
- Mechanistic Target of Rapamycin Complex 1 MeSH
- Mice MeSH
- Proteins MeSH
- Signal Transduction * MeSH
- Pregnancy MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Pregnancy MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Mechanistic Target of Rapamycin Complex 1 MeSH
- Proteins MeSH
There are major differences in duration and scale at which limb development and regeneration proceed, raising the question to what extent regeneration is a recapitulation of development. We address this by analyzing skeletal elements using a combination of micro-CT imaging, molecular profiling and clonal cell tracing. We find that, in contrast to development, regenerative skeletal growth is accomplished based entirely on cartilage expansion prior to ossification, not limiting the transversal cartilage expansion and resulting in bulkier skeletal parts. The oriented extension of salamander cartilage and bone appear similar to the development of basicranial synchondroses in mammals, as we found no evidence for cartilage stem cell niches or growth plate-like structures during neither development nor regeneration. Both regenerative and developmental ossification in salamanders start from the cortical bone and proceeds inwards, showing the diversity of schemes for the synchrony of cortical and endochondral ossification among vertebrates.
- MeSH
- Cell Division MeSH
- Cartilage MeSH
- Bone and Bones MeSH
- Osteogenesis * MeSH
- Mammals MeSH
- Caudata * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Body growth is typically thought to be indeterminate in ectothermic vertebrates. Indeed, until recently, this growth pattern was considered to be ubiquitous in ectotherms. Our recent observations of a complete growth plate cartilage (GPC) resorption, a reliable indicator of arrested skeletal growth, in many species of lizards clearly reject the ubiquity of indeterminate growth in reptiles and raise the question about the ancestral state of the growth pattern. Using X-ray micro-computed tomography (µCT), here we examined GPCs of long bones in three basally branching clades of squamate reptiles, namely in Gekkota, Scincoidea and Lacertoidea. A complete loss of GPC, indicating skeletal growth arrest, was the predominant finding. Using a dataset of 164 species representing all major clades of lizards and the tuataras, we traced the evolution of determinate growth on the phylogenetic tree of Lepidosauria. The reconstruction of character states suggests that determinate growth is ancestral for the squamate reptiles (Squamata) and remains common in the majority of lizard lineages, while extended (potentially indeterminate) adult growth evolved several times within squamates. Although traditionally associated with endotherms, determinate growth is coupled with ectothermy in this lineage. These findings combined with existing literature suggest that determinate growth predominates in both extant and extinct amniotes.
- Keywords
- determinate growth, endothermy, growth plate cartilage, indeterminate growth, micro-CT, squamata,
- MeSH
- Biological Evolution MeSH
- Phylogeny MeSH
- Snakes MeSH
- Lizards MeSH
- Reptiles growth & development physiology MeSH
- X-Ray Microtomography MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH