Nejvíce citovaný článek - PubMed ID 30960757
Reversible Actuation Ability upon Light Stimulation of the Smart Systems with Controllably Grafted Graphene Oxide with Poly (Glycidyl Methacrylate) and PDMS Elastomer: Effect of Compatibility and Graphene Oxide Reduction on the Photo-Actuation Performance
This study reports the utilization of controlled radical polymerization as a tool for controlling the stimuli-responsive capabilities of graphene oxide (GO) based hybrid systems. Various polymer brushes with controlled molecular weight and narrow molecular weight distribution were grafted from the GO surface by surface-initiated atom transfer radical polymerization (SI-ATRP). The modification of GO with poly(n-butyl methacrylate) (PBMA), poly(glycidyl methacrylate) (PGMA), poly(trimethylsilyloxyethyl methacrylate) (PHEMATMS) and poly(methyl methacrylate) (PMMA) was confirmed by thermogravimetric analysis (TGA) coupled with online Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Various grafting densities of GO-based materials were investigated, and conductivity was elucidated using a four-point probe method. Raman shift and XPS were used to confirm the reduction of surface properties of the GO particles during SI-ATRP. The contact angle measurements indicated the changes in the compatibility of GOs with silicone oil, depending on the structure of the grafted polymer chains. The compatibility of the GOs with poly(dimethylsiloxane) was also investigated using steady shear rheology. The tunability of the electrorheological, as well as the photo-actuation capability, was investigated. It was shown that in addition to the modification of conductivity, the dipole moment of the pendant groups of the grafted polymer chains also plays an important role in the electrorheological (ER) performance. The compatibility of the particles with the polymer matrix, and thus proper particles dispersibility, is the most important factor for the photo-actuation efficiency. The plasticizing effect of the GO-polymer hybrid filler also has a crucial impact on the matrix stiffness and thus the ability to reversibly respond to the external light stimulation.
- Klíčová slova
- SI-ATRP, compatibility, conductivity, grafting, graphene oxide, smart composites,
- Publikační typ
- časopisecké články MeSH
This article is focused on the facile procedure for 2D graphene oxide (GO) fabrication, utilizing reversible de-activation polymerization approach and therefore enhanced compatibility with surrounding polymer matrix. Such tunable improvement led to a controllable sensing response after irradiation with light. The neat GO as well as surface initiated atom transfer radical polymerization (SI-ATRP) grafted particles were investigated by atomic force microscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis. To confirm the successful surface reduction, X-ray photoelectron spectroscopy and Raman spectroscopy was utilized. The composites in form of non-woven fiber mats containing ungrafted GO and controllably grafted GO with compact layer of polymer dispersed in poly(vinylidene-co-hexafluoropropylene) were prepared by electrospinning technique and characterized by scanning electron microscopy. Mechanical performance was characterized using dynamic mechanical analysis. Thermal conductivity was employed to confirm that the conducting filler was well-dispersed in the polymer matrix. The presented controllable coating with polymer layer and its impact on the overall performance, especially photo-actuation and subsequent contraction of the material aiming on the sensing applications, was discussed.
- Klíčová slova
- PBMA, PVDF-co-HFP, elastomers, graphene oxide, light-induced actuation, sensing,
- Publikační typ
- časopisecké články MeSH
This study serves to combine two approaches into one single step, to achieve a significant improvement of the light-induced actuation capabilities. Graphene oxide (GO) is an inert material, from the electrical and thermal conductivity point of view, and is incompatible with the usually-used poly(dimethylsiloxane) (PDMS) matrix. During surface-modification by surface-initiated atom transfer radical polymerization, the GO was transformed into a conducting and compatible material with the PDMS showing enormous light-induced actuation capability. The GO surface-modification with poly(2-(trimethylsilyloxy)ethyl methacrylate) (PHEMATMS) chains was confirmed by transmission electron microscopy and thermogravimetric analysis, with an on-line monitoring of gasses using FTIR. The improved compatibility was elucidated using contact angle and dielectric properties measurements. The PHEMATMS shell was investigated using gel permeation chromatography and nuclear magnetic resonance. The improved electric conductivity was measured using the four-point probe method and by Raman spectroscopy. The very important mechanical properties were elucidated using dynamic mechanical analysis, and with the help of thermo-mechanic analysis for the light-induced actuation. The excellent actuation capabilities observed, with changes in the length of around 0.8% at 10% pre-strain, are very promising from the point of view of applications.
- Klíčová slova
- SI-ATRP, dielectrics, dynamic mechanical analysis, graphene oxide, light-induced actuation, reduction,
- Publikační typ
- časopisecké články MeSH