Most cited article - PubMed ID 31177797
The influence of purification of carp collagen used in a novel composite graft with sandwich construction of the wall on its biological properties and graft patency rates
Collagen membranes are widely used in tissue and bone engineering, including guided bone regeneration (GBR). For effective and uninterrupted bone healing, a GBR membrane must maintain its functionality for an initial critical period of 4 weeks. A novel carp collagen sponge has already shown promise as a wound coating and vascular graft coating, making it a candidate for GBR applications as well. To enhance the mechanical properties and longevity of GBR membranes, we modified the basic carp collagen membrane with combinations of l-lactide, ε-caprolactone, d,l-lactide, and glycolide in various molar ratios. While traditional methods rely on histological evaluation to assess the degradation pattern and therefore suitability of GBR membranes ex vivo, this study employed micro-MRI as an innovative, noninvasive approach to monitor the in vivo degradation of carp collagen membrane and its polymer-modified variants. Our findings demonstrated that micro-MRI is a reliable and effective method for visualizing collagen membrane degradation in vivo, up to scaffold disintegration. Among the variants tested, collagen GBR membrane coated with d,l-lactide and glycolide in a 50:50 M ratio emerged as the most suitable for GBR purposes. However, since this study was conducted in the subcutaneous tissue of a rat model, further research is required to determine the behavior of carp collagen GBR membrane variants on bony surfaces.
- Keywords
- GBR membrane, TERM, carp skin collagen, guided bone regeneration, in vivo collagen degradation, inflammatory reaction, micro‐MRI analysis,
- MeSH
- Carps MeSH
- Collagen * chemistry metabolism MeSH
- Rats MeSH
- Magnetic Resonance Imaging MeSH
- Membranes, Artificial * MeSH
- Bone Regeneration MeSH
- Tissue Engineering MeSH
- Tissue Scaffolds chemistry MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Collagen * MeSH
- Membranes, Artificial * MeSH
Bone defects resulting from trauma, surgery, and congenital, infectious, or oncological diseases are a functional and aesthetic burden for patients. Bone regeneration is a demanding procedure, involving a spectrum of molecular processes and requiring the use of various scaffolds and substances, often yielding an unsatisfactory result. Recently, the new collagen sponge and its structural derivatives manufactured from European carp (Cyprinus carpio) were introduced and patented. Due to its fish origin, the novel scaffold poses no risk of allergic reactions or transfer of zoonoses and additionally shows superior biocompatibility, mechanical stability, adjustable degradation rate, and porosity. In this review, we focus on the basic principles of bone regeneration and describe the characteristics of an "ideal" bone scaffold focusing on guided bone regeneration. Moreover, we suggest several possible applications of this novel material in bone regeneration processes, thus opening new horizons for further research.
- Keywords
- GBR membrane, bioactive scaffold, bone regeneration, carp collagen, tissue engineering,
- Publication type
- Journal Article MeSH
- Review MeSH
Cardiovascular diseases are the most important cause of morbidity and mortality in the civilized world. Stenosis or occlusion of blood vessels leads not only to events that are directly life-threatening, such as myocardial infarction or stroke, but also to a significant reduction in quality of life, for example in lower limb ischemia as a consequence of metabolic diseases. The first synthetic polymeric vascular replacements were used clinically in the early 1950s. However, they proved to be suitable only for larger-diameter vessels, where the blood flow prevents the attachment of platelets, pro-inflammatory cells and smooth muscle cells on their inner surface, whereas in smaller-diameter grafts (6 mm or less), these phenomena lead to stenosis and failure of the graft. Moreover, these polymeric vascular replacements, like biological grafts (decellularized or devitalized), are cell-free, i.e. there are no reconstructed physiological layers of the blood vessel wall, i.e. an inner layer of endothelial cells to prevent thrombosis, a middle layer of smooth muscle cells to perform the contractile function, and an outer layer to provide innervation and vascularization of the vessel wall. Vascular substitutes with these cellular components can be constructed by tissue engineering methods. However, it has to be admitted that even about 70 years after the first polymeric vascular prostheses were implanted into human patients, there are still no functional small-diameter vascular grafts on the market. The damage to small-diameter blood vessels has to be addressed by endovascular approaches or by autologous vascular substitutes, which leads to some skepticism about the potential of tissue engineering. However, new possibilities of this approach lie in the use of modern technologies such as 3D bioprinting and/or electrospinning in combination with stem cells and pre-vascularization of tissue-engineered vascular grafts. In this endeavor, sex-related differences in the removal of degradable biomaterials by the cells and in the behavior of stem cells and pre-differentiated vascular cells need to be taken into account. Key words: Blood vessel prosthesis, Regenerative medicine, Stem cells, Footprint-free iPSCs, sr-RNA, Dynamic bioreactor, Sex-related differences.