Nejvíce citovaný článek - PubMed ID 31209889
DNA repair and cancer in colon and rectum: Novel players in genetic susceptibility
The phenotypic effects of single nucleotide polymorphisms (SNPs) in the development of sporadic solid cancers are still scarce. The aim of this review was to summarise and analyse published data on the associations between SNPs in mismatch repair genes and various cancers. The mismatch repair system plays a unique role in the control of the genetic integrity and it is often inactivated (germline and somatic mutations and hypermethylation) in cancer patients. Here, we focused on germline variants in mismatch repair genes and found the outcomes rather controversial: some SNPs are sometimes ascribed as protective, while other studies reported their pathological effects. Regarding the complexity of cancer as one disease, we attempted to ascertain if particular polymorphisms exert the effect in the same direction in the development and treatment of different malignancies, although it is still not straightforward to conclude whether polymorphisms always play a clear positive role or a negative one. Most recent and robust genome-wide studies suggest that risk of cancer is modulated by variants in mismatch repair genes, for example in colorectal cancer. Our study shows that rs1800734 in MLH1 or rs2303428 in MSH2 may influence the development of different malignancies. The lack of functional studies on many DNA mismatch repair SNPs as well as their interactions are not explored yet. Notably, the concerted action of more variants in one individual may be protective or harmful. Further, complex interactions of DNA mismatch repair variations with both the environment and microenvironment in the cancer pathogenesis will deserve further attention.
- Klíčová slova
- cancer, genes, genetic variants, genotype, mismatch repair, patients, single nucleotide polymorphism, treatment outcome,
- MeSH
- homolog 2 proteinu MutS genetika MeSH
- jednonukleotidový polymorfismus genetika MeSH
- lidé MeSH
- metylace DNA genetika MeSH
- MutL homolog 1 genetika MeSH
- nádory genetika patologie MeSH
- oprava chybného párování bází DNA genetika MeSH
- progrese nemoci MeSH
- zárodečné mutace genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- homolog 2 proteinu MutS MeSH
- MLH1 protein, human MeSH Prohlížeč
- MSH2 protein, human MeSH Prohlížeč
- MutL homolog 1 MeSH
Oxidative stress with subsequent premutagenic oxidative DNA damage has been implicated in colorectal carcinogenesis. The repair of oxidative DNA damage is initiated by lesion-specific DNA glycosylases (hOGG1, NTH1, MUTYH). The direct evidence of the role of oxidative DNA damage and its repair is proven by hereditary syndromes (MUTYH-associated polyposis, NTHL1-associated tumor syndrome), where germline mutations cause loss-of-function in glycosylases of base excision repair, thus enabling the accumulation of oxidative DNA damage and leading to the adenoma-colorectal cancer transition. Unrepaired oxidative DNA damage often results in G:C>T:A mutations in tumor suppressor genes and proto-oncogenes and widespread occurrence of chromosomal copy-neutral loss of heterozygosity. However, the situation is more complicated in complex and heterogeneous disease, such as sporadic colorectal cancer. Here we summarized our current knowledge of the role of oxidative DNA damage and its repair on the onset, prognosis and treatment of sporadic colorectal cancer. Molecular and histological tumor heterogeneity was considered. Our study has also suggested an additional important source of oxidative DNA damage due to intestinal dysbiosis. The roles of base excision repair glycosylases (hOGG1, MUTYH) in tumor and adjacent mucosa tissues of colorectal cancer patients, particularly in the interplay with other factors (especially microenvironment), deserve further attention. Base excision repair characteristics determined in colorectal cancer tissues reflect, rather, a disease prognosis. Finally, we discuss the role of DNA repair in the treatment of colon cancer, since acquired or inherited defects in DNA repair pathways can be effectively used in therapy.
- Klíčová slova
- DNA repair, base excision repair (BER)glycosylases, colorectal cancer, oxidative DNA damage,
- MeSH
- buněčné mikroprostředí MeSH
- cílená molekulární terapie MeSH
- DNA-glykosylasy metabolismus MeSH
- kolorektální nádory etiologie metabolismus patologie terapie MeSH
- lidé MeSH
- náchylnost k nemoci * MeSH
- nádorová transformace buněk genetika metabolismus MeSH
- oprava DNA MeSH
- oxidační stres * MeSH
- poškození DNA * MeSH
- střevní sliznice metabolismus mikrobiologie patologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- DNA-glykosylasy MeSH