Most cited article - PubMed ID 31222479
The Gene Score for Predicting Hypertriglyceridemia: New Insights from a Czech Case-Control Study
BACKGROUND: Despite a general decline in mean levels across populations, LDL-cholesterol levels remain a major risk factor for acute coronary syndrome (ACS). The APOB, LDL-R, CILP, and SORT-1 genes have been shown to contain variants that have significant effects on plasma cholesterol levels. METHODS AND RESULTS: We examined polymorphisms within these genes in 1191 controls and 929 patients with ACS. Only rs646776 within SORT-1 was significantly associated with a risk of ACS (P < 0.05, AA vs. + G comparison; OR 1.21; 95% CI 1.01-1.45). With regard to genetic risk score (GRS), the presence of at least 7 alleles associated with elevated cholesterol levels was connected with increased risk (P < 0.01) of ACS (OR 1.26; 95% CI 1.06-1.52). Neither total mortality nor CVD mortality in ACS subjects (follow up-9.84 ± 3.82 years) was associated with the SNPs analysed or cholesterol-associated GRS. CONCLUSIONS: We conclude that, based on only a few potent SNPs known to affect plasma cholesterol, GRS has the potential to predict ACS risk, but not ACS associated mortality.
- Keywords
- Acute coronary syndrome, Cholesterol, Polymorphism, Risk estimation,
- MeSH
- Acute Coronary Syndrome * genetics MeSH
- Cholesterol MeSH
- Genetic Risk Score * MeSH
- Polymorphism, Single Nucleotide genetics MeSH
- Humans MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Czech Republic epidemiology MeSH
- Names of Substances
- Cholesterol MeSH
Despite the rapid progress in diagnosis and treatment of cardiovascular disease (CVD), this disease remains a major cause of mortality and morbidity. Recent progress over the last two decades in the field of molecular genetics, especially with new tools such as genome-wide association studies, has helped to identify new genes and their variants, which can be used for calculations of risk, prediction of treatment efficacy, or detection of subjects prone to drug side effects. Although the use of genetic risk scores further improves CVD prediction, the significance is not unambiguous, and some subjects at risk remain undetected. Further research directions should focus on the "second level" of genetic information, namely, regulatory molecules (miRNAs) and epigenetic changes, predominantly DNA methylation and gene-environment interactions.
- Keywords
- cardiovascular disease, epigenetic, gene, gene score, interaction, polymorphism,
- MeSH
- Genome-Wide Association Study methods MeSH
- Genetic Predisposition to Disease MeSH
- Genetic Testing methods MeSH
- Precision Medicine methods MeSH
- Cardiovascular Diseases diagnosis genetics therapy MeSH
- Humans MeSH
- Nutrigenomics methods MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Familial hypercholesterolemia (FH) is one of the most common monogenic diseases, leading to an increased risk of premature atherosclerosis and its cardiovascular complications due to its effect on plasma cholesterol levels. Variants of three genes (LDL-R, APOB and PCSK9) are the major causes of FH, but in some probands, the FH phenotype is associated with variants of other genes. Alternatively, the typical clinical picture of FH can result from the accumulation of common cholesterol-increasing alleles (polygenic FH). Although the Czech Republic is one of the most successful countries with respect to FH detection, approximately 80% of FH patients remain undiagnosed. The opportunities for international collaboration and experience sharing within international programs (e.g., EAS FHSC, ScreenPro FH, etc.) will improve the detection of FH patients in the future and enable even more accessible and accurate genetic diagnostics.
- Keywords
- epidemiology, familial hypercholesterolemia, gene score, polygenic FH, variants,
- Publication type
- Journal Article MeSH
- Review MeSH
BACKGROUND: The Czech governmental study suggests up to a 25% higher prevalence of type 2 diabetes mellitus (T2DM) in the Roma population than within the majority population. It is not known whether and to what extent these differences have a genetic background. METHODS: To analyze whether the frequencies of the alleles/genotypes of the FTO, TCF7L2, CDKN2A/2B, MAEA, TLE4, IGF2BP2, ARAP1, and KCNJ11 genes differ between the two major ethnic groups in the Czech Republic, we examined them in DNA samples from 302 Roma individuals and 298 Czech individuals. RESULTS: Compared to the majority population, Roma are more likely to carry risk alleles in the FTO (26% vs. 16% GG homozygotes, p < .01), IGF2BP2 (22% vs. 10% TT homozygotes, p < .0001), ARAP1 (98% vs. 95% of A allele carriers, p < .005), and CDKN2A/2B (81% vs. 66% of TT homozygotes, p < .001) genes; however, less frequently they are carriers of the TCF7L2 risk allele (34% vs. 48% of the T allele p < .0005). Finally, we found significant accumulation of T2DM-associated alleles between the Roma population in comparison with the majority population (25.4% vs. 15.2% of the carriers of at least 12 risk alleles; p < .0001). CONCLUSION: The increased prevalence of T2DM in the Roma population may have a background in different frequencies of the risk alleles of genes associated with T2DM development.
- Keywords
- Czech population, Roma population, T2DM, gene score, polymorphism,
- MeSH
- Adiposity MeSH
- Cholesterol blood MeSH
- Diabetes Mellitus, Type 2 blood ethnology genetics MeSH
- Adult MeSH
- Gene Frequency * MeSH
- Genetic Loci * MeSH
- Blood Glucose analysis MeSH
- Middle Aged MeSH
- Humans MeSH
- Polymorphism, Genetic MeSH
- Roma genetics MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic MeSH
- Names of Substances
- Cholesterol MeSH
- Blood Glucose MeSH