Nejvíce citovaný článek - PubMed ID 31414204
The biochemistry underpinning industrial seed technology and mechanical processing of sugar beet
BACKGROUND: The biomechanical, morphological and ecophysiological properties of plant seed/fruit structures are adaptations that support survival in unpredictable environments. High phenotypic variability of noxious and invasive weed species such as Raphanus raphanistrum (wild radish) allow diversification into new environmental niches. Dry indehiscent fruits (thick and lignified pericarp [fruit coat] enclosing seeds) have evolved many times independently. METHODS: A multiscale biomechanics and imaging (microscopy, X-ray, finite element stress simulation, puncture force analysis) approach was used to comparatively investigate the indehiscent fruits of R. raphanistrum (global weed), R. pugioniformis (endemic weed) and R. sativus (cultivated radish). RESULTS: The hard pericarp of Raphanus species (Brassicaceae) imposes mechanical dormancy by preventing full phase-II water uptake of the enclosed seeds. The apparently unilocular fruits of Raphanus species develop from two fused valves, pericarp rupture to permit germination is confined to the midvalve regions, and each midvalve region contains a predetermined breaking zone that is biomechanically defined by the internal shape of the seed chambers. Direct biomechanical analysis revealed great variability in within-fruit and between-fruits pericarp resistances. CONCLUSIONS: Variability in pericarp-imposed dormancy provides a bet-hedging strategy to affect soil seed bank persistence and prolong the germinability period.
- Klíčová slova
- Functional morphology, finite element stress simulation, fruit coat biomechanics, pericarp-imposed mechanical dormancy, predetermined breaking zone, soil seed bank persistence,
- MeSH
- analýza metodou konečných prvků MeSH
- biomechanika MeSH
- klíčení * fyziologie MeSH
- ovoce * fyziologie anatomie a histologie MeSH
- Raphanus * fyziologie anatomie a histologie MeSH
- semena rostlinná fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
Plants in habitats with unpredictable conditions often have diversified bet-hedging strategies that ensure fitness over a wider range of variable environmental factors. A striking example is the diaspore (seed and fruit) heteromorphism that evolved to maximize species survival in Aethionema arabicum (Brassicaceae) in which external and endogenous triggers allow the production of two distinct diaspores on the same plant. Using this dimorphic diaspore model, we identified contrasting molecular, biophysical, and ecophysiological mechanisms in the germination responses to different temperatures of the mucilaginous seeds (M+ seed morphs), the dispersed indehiscent fruits (IND fruit morphs), and the bare non-mucilaginous M- seeds obtained by pericarp (fruit coat) removal from IND fruits. Large-scale comparative transcriptome and hormone analyses of M+ seeds, IND fruits, and M- seeds provided comprehensive datasets for their distinct thermal responses. Morph-specific differences in co-expressed gene modules in seeds, as well as in seed and pericarp hormone contents, identified a role of the IND pericarp in imposing coat dormancy by generating hypoxia affecting abscisic acid (ABA) sensitivity. This involved expression of morph-specific transcription factors, hypoxia response, and cell wall remodeling genes, as well as altered ABA metabolism, transport, and signaling. Parental temperature affected ABA contents and ABA-related gene expression and altered IND pericarp biomechanical properties. Elucidating the molecular framework underlying the diaspore heteromorphism can provide insight into developmental responses to globally changing temperatures.
- MeSH
- Brassicaceae * genetika fyziologie metabolismus MeSH
- klíčení * genetika fyziologie MeSH
- kyselina abscisová metabolismus MeSH
- ovoce * genetika fyziologie růst a vývoj metabolismus MeSH
- regulace genové exprese u rostlin * MeSH
- regulátory růstu rostlin metabolismus MeSH
- semena rostlinná * genetika fyziologie růst a vývoj metabolismus MeSH
- teplota * MeSH
- transkriptom genetika MeSH
- vegetační klid genetika fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kyselina abscisová MeSH
- regulátory růstu rostlin MeSH
The transition from germinating seeds to emerging seedlings is one of the most vulnerable plant life cycle stages. Heteromorphic diaspores (seed and fruit dispersal units) are an adaptive bet-hedging strategy to cope with spatiotemporally variable environments. While the roles and mechanisms of seedling traits have been studied in monomorphic species, which produce one type of diaspore, very little is known about seedlings in heteromorphic species. Using the dimorphic diaspore model Aethionema arabicum (Brassicaceae), we identified contrasting mechanisms in the germination responses to different temperatures of the mucilaginous seeds (M+ seed morphs), the dispersed indehiscent fruits (IND fruit morphs), and the bare non-mucilaginous M- seeds obtained from IND fruits by pericarp (fruit coat) removal. What follows the completion of germination is the pre-emergence seedling growth phase, which we investigated by comparative growth assays of early seedlings derived from the M+ seeds, bare M- seeds, and IND fruits. The dimorphic seedlings derived from M+ and M- seeds did not differ in their responses to ambient temperature and water potential. The phenotype of seedlings derived from IND fruits differed in that they had bent hypocotyls and their shoot and root growth was slower, but the biomechanical hypocotyl properties of 15-day-old seedlings did not differ between seedlings derived from germinated M+ seeds, M- seeds, or IND fruits. Comparison of the transcriptomes of the natural dimorphic diaspores, M+ seeds and IND fruits, identified 2,682 differentially expressed genes (DEGs) during late germination. During the subsequent 3 days of seedling pre-emergence growth, the number of DEGs was reduced 10-fold to 277 root DEGs and 16-fold to 164 shoot DEGs. Among the DEGs in early seedlings were hormonal regulators, in particular for auxin, ethylene, and gibberellins. Furthermore, DEGs were identified for water and ion transporters, nitrate transporter and assimilation enzymes, and cell wall remodeling protein genes encoding enzymes targeting xyloglucan and pectin. We conclude that the transcriptomes of seedlings derived from the dimorphic diaspores, M+ seeds and IND fruits, undergo transcriptional resetting during the post-germination pre-emergence growth transition phase from germinated diaspores to growing seedlings.
The dynamic behaviour of seeds in soil seed banks depends on their ability to act as sophisticated environmental sensors to adjust their sensitivity thresholds for germination by dormancy mechanisms. Here we show that prolonged incubation of sugar beet fruits at low temperature (chilling at 5°C, generally known to release seed dormancy of many species) can induce secondary nondeep physiological dormancy of an apparently nondormant crop species. The physiological and biophysical mechanisms underpinning this cold-induced secondary dormancy include the chilling-induced accumulation of abscisic acid in the seeds, a reduction in the embryo growth potential and a block in weakening of the endosperm covering the embryonic root. Transcriptome analysis revealed distinct gene expression patterns in the different temperature regimes and upon secondary dormancy induction and maintenance. The chilling caused reduced expression of cell wall remodelling protein genes required for embryo cell elongation growth and endosperm weakening, as well as increased expression of seed maturation genes, such as for late embryogenesis abundant proteins. A model integrating the hormonal signalling and master regulator expression with the temperature-control of seed dormancy and maturation programmes is proposed. The revealed mechanisms of the cold-induced secondary dormancy are important for climate-smart agriculture and food security.
- Klíčová slova
- coat dormancy, cold-induced dormancy, embryo growth potential, endosperm weakening, germination temperature, secondary dormancy, seed transcriptomes, sugar beet,
- MeSH
- Beta vulgaris * genetika MeSH
- klíčení fyziologie MeSH
- kyselina abscisová metabolismus MeSH
- semena rostlinná fyziologie MeSH
- vegetační klid genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kyselina abscisová MeSH
Storage at an elevated partial pressure of oxygen and classical artificial ageing cause a rapid loss of seed viability of short-lived vegetable seeds. Prolonging seed longevity during storage is of major importance for gene banks and the horticultural industry. Slowing down biochemical deterioration, including oxygen-dependent deterioration caused by oxidative processes can boost longevity. This can be affected by the seed structure and the oxygen permeability of seed coat layers. Classical artificial seed ageing assays are used to estimate seed 'shelf-life' by mimicking seed ageing via incubating seeds at elevated temperature and elevated relative humidity (causing elevated equilibrium seed moisture content). In this study, we show that seed lots of vegetable Allium species are short-lived both during dry storage for several months and in seed ageing assays at elevated seed moisture levels. Micromorphological analysis of the Allium cepa x Allium fistulosum salad onion seed identified intact seed coat and endosperm layers. Allium seeds equilibrated at 70% relative humidity were used to investigate seed ageing at tenfold elevated partial pressure of oxygen (high pO2) at room temperature (22 ºC) in comparison to classical artificial ageing at elevated temperature (42 ºC). Our results reveal that 30 days high pO2 treatment causes a rapid loss of seed viability which quantitatively corresponded to the seed viability loss observed by ~ 7 days classical artificial ageing. A similar number of normal seedlings develop from the germinating (viable) proportion of seeds in the population. Many long-lived seeds first exhibit a seed vigour loss, evident from a reduced germination speed, preceding the loss in seed viability. In contrast to this, seed ageing of our short-lived Allium vegetable seems to be characterised by a rapid loss in seed viability.
- Klíčová slova
- Accelerated artificial ageing, Allium cepa x Allium fistulosum, Classical seed ageing, Controlled deterioration, Elevated partial pressure of oxygen (EPPO), Salad onion, Seed viability, Seed longevity, Spring onion,
- MeSH
- Allium fyziologie MeSH
- klíčení MeSH
- kyslík chemie MeSH
- parciální tlak MeSH
- semena rostlinná fyziologie MeSH
- semenáček fyziologie MeSH
- zelenina MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kyslík MeSH