Most cited article - PubMed ID 31519985
Nanomotor tracking experiments at the edge of reproducibility
Inspired by Richard Feynman's 1959 lecture and the 1966 film Fantastic Voyage, the field of micro/nanorobots has evolved from science fiction to reality, with significant advancements in biomedical and environmental applications. Despite the rapid progress, the deployment of functional micro/nanorobots remains limited. This review of the technology roadmap identifies key challenges hindering their widespread use, focusing on propulsion mechanisms, fundamental theoretical aspects, collective behavior, material design, and embodied intelligence. We explore the current state of micro/nanorobot technology, with an emphasis on applications in biomedicine, environmental remediation, analytical sensing, and other industrial technological aspects. Additionally, we analyze issues related to scaling up production, commercialization, and regulatory frameworks that are crucial for transitioning from research to practical applications. We also emphasize the need for interdisciplinary collaboration to address both technical and nontechnical challenges, such as sustainability, ethics, and business considerations. Finally, we propose a roadmap for future research to accelerate the development of micro/nanorobots, positioning them as essential tools for addressing grand challenges and enhancing the quality of life.
- Keywords
- collective behavior, functionality, intelligence, micro/nanorobots, nanotechnology, propulsion, smart materials, technological translation,
- MeSH
- Humans MeSH
- Nanotechnology * methods MeSH
- Robotics * instrumentation MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Achieving precise control of cellular processes drives possibilities for next-generation therapeutic approaches. However, existing technologies for influencing cell behavior primarily rely on specific drug delivery, limiting their ability to mimic natural cellular communication processes. In this work, we developed glucose-powered gold-silica (Au-SiO2) nanorobots that induce cell migration by generating steady-state hydrogen peroxide (H2O2) as a biochemical signaling molecule to mimic natural cellular communication with high spatial resolution. These nanorobots leverage the unique 2-in-1 catalytic activity of gold nanoparticles for glucose oxidation and H2O2 decomposition, allowing for precise control over the generation of steady-state H2O2 concentration and enhanced diffusion powered by glucose within the cellular microenvironment. We further demonstrated that at low dosages of nanorobots, the steady-state H2O2 generation promotes cell migration and proliferation, while higher dosages of nanorobots slow down cell proliferation. The proposed design of this biocompatible nanorobot is intended to enable communication with the environment and provide a noninvasive, biochemical command system for regulating cellular behavior. Additionally, we show proof of principle of a method by which nanorobots can augment wound healing and similar regenerative therapies.
- Keywords
- cell signaling, communication, enhanced diffusion, nanorobot, steady-state,
- MeSH
- Glucose chemistry metabolism MeSH
- Metal Nanoparticles * chemistry MeSH
- Humans MeSH
- Cell Communication * drug effects MeSH
- Mice MeSH
- Silicon Dioxide chemistry MeSH
- Hydrogen Peroxide metabolism chemistry MeSH
- Cell Movement drug effects MeSH
- Cell Proliferation drug effects MeSH
- Regenerative Medicine * MeSH
- Gold chemistry MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Glucose MeSH
- Silicon Dioxide MeSH
- Hydrogen Peroxide MeSH
- Gold MeSH
Nanoplastic pollution, the final product of plastic waste fragmentation in the environment, represents an increasing concern for the scientific community due to the easier diffusion and higher hazard associated with their small sizes. Therefore, there is a pressing demand for effective strategies to quantify and remove nanoplastics in wastewater. This work presents the "on-the-fly" capture of nanoplastics in the three-dimensional (3D) space by multifunctional MXene-derived oxide microrobots and their further detection. A thermal annealing process is used to convert Ti3C2Tx MXene into photocatalytic multi-layered TiO2, followed by the deposition of a Pt layer and the decoration with magnetic γ-Fe2O3 nanoparticles. The MXene-derived γ-Fe2O3/Pt/TiO2 microrobots show negative photogravitaxis, resulting in a powerful fuel-free motion with six degrees of freedom under light irradiation. Owing to the unique combination of self-propulsion and programmable Zeta potential, the microrobots can quickly attract and trap nanoplastics on their surface, including the slits between multi-layer stacks, allowing their magnetic collection. Utilized as self-motile preconcentration platforms, they enable nanoplastics' electrochemical detection using low-cost and portable electrodes. This proof-of-concept study paves the way toward the "on-site" screening of nanoplastics in water and its successive remediation.
- MeSH
- Microplastics * MeSH
- Nanoparticles * MeSH
- Wastewater MeSH
- Oxides MeSH
- Plastics MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Microplastics * MeSH
- Waste Water MeSH
- Oxides MeSH
- Plastics MeSH