Nejvíce citovaný článek - PubMed ID 31614608
Cell Cycle Arrest by Supraoptimal Temperature in the Alga Chlamydomonas reinhardtii
The production of organic deuterated compounds in microalgal systems represents a cheaper and more versatile alternative to more complicated chemical synthesis. In the present study, we investigate the autotrophic growth of two microalgae, Chlamydomonas reinhardtii and Desmodesmus quadricauda, in medium containing high doses of deuterated water, D2O. The growth of such cultures was evaluated in the context of the intensity of incident light, since light is a critical factor in the management of autotrophic algal cultures. Deuteration increases the light sensitivity of both model organisms, resulting in increased levels of singlet oxygen and poorer photosynthetic performance. Our results also show a slowdown in growth and cell division processes with increasing D2O concentrations. At the same time, impaired cell division leads to cell enlargement and accumulation of highly deuterated compounds, especially energy-storing molecules. Thus, considering the specifics of highly deuterated cultures and using the growth conditions proposed in this study, it is possible to obtain highly deuterated algal biomass, which could be a valuable source of deuterated organic compounds.
- Klíčová slova
- cell division, deuterated compounds, deuterium, light intensity, microalgae, physical stress,
- Publikační typ
- časopisecké články MeSH
Light is the essential energy source for autotrophically growing organisms, including microalgae. Both light intensity and light quality affect cell growth and biomass composition. Here we used three green algae-Chlamydomonas reinhardtii, Desmodesmus quadricauda, and Parachlorella kessleri-to study the effects of different light intensities and light spectra on their growth. Cultures were grown at three different light intensities (100, 250, and 500 µmol m-2 s-1) and three different light sources: fluorescent lamps, RGB LEDs, and white LEDs. Cultures of Desmodesmus quadricauda and Parachlorella kessleri were saturated at 250 µmol m-2 s-1, and further increasing the light intensity did not improve their growth. Chlamydomonas reinhardtii cultures did not reach saturation under the conditions used. All species usually divide into more than two daughter cells by a mechanism called multiple fission. Increasing light intensity resulted in an increase in maximum cell size and division into more daughter cells. In Parachlorella kessleri cells, the concentration of photosynthetic pigments decreased with light intensity. Different light sources had no effect on algal growth or photosynthetic pigments. The results show a species-specific response of algae to light intensity and support the use of any white light source for their cultivation without negative effects on growth.
- Klíčová slova
- Chlamydomonas reinhardtii, Desmodesmus quadricauda, LED, Parachlorella kessleri, cell growth, fluorescent tube, light intensity,
- MeSH
- biomasa MeSH
- Chlamydomonas reinhardtii * MeSH
- Chlorophyta * MeSH
- fotosyntéza MeSH
- mikrořasy * MeSH
- světlo MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Green algae are fast-growing microorganisms that are considered promising for the production of starch and neutral lipids, and the chlorococcal green alga Parachlorella kessleri is a favorable model, as it can produce both starch and neutral lipids. P. kessleri commonly divides into more than two daughter cells by a specific mechanism-multiple fission. Here, we used synchronized cultures of the alga to study the effects of supra-optimal temperature. Synchronized cultures were grown at optimal (30 °C) and supra-optimal (40 °C) temperatures and incident light intensities of 110 and 500 μmol photons m-2 s-1. The time course of cell reproduction (DNA replication, cellular division), growth (total RNA, protein, cell dry matter, cell size), and synthesis of energy reserves (net starch, neutral lipid) was studied. At 40 °C, cell reproduction was arrested, but growth and accumulation of energy reserves continued; this led to the production of giant cells enriched in protein, starch, and neutral lipids. Furthermore, we examined whether the increased temperature could alleviate the effects of deuterated water on Parachlorella kessleri growth and division; results show that supra-optimal temperature can be used in algal biotechnology for the production of protein, (deuterated) starch, and neutral lipids.
- Klíčová slova
- Parachlorella kessleri, cell cycle, deuterated lipid, deuterated starch, deuterium, energy reserves, growth processes, microalgae, reproduction events, starch, supra-optimal temperature,
- MeSH
- biomasa MeSH
- buněčné dělení fyziologie MeSH
- Chlorophyta růst a vývoj MeSH
- lipidy MeSH
- metabolismus lipidů fyziologie MeSH
- mikrořasy metabolismus MeSH
- škrob metabolismus MeSH
- teplota * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- lipidy MeSH
- škrob MeSH
The extremophilic unicellular red microalga Galdieria sulphuraria (Cyanidiophyceae) is able to grow autotrophically, or mixo- and heterotrophically with 1% glycerol as a carbon source. The alga divides by multiple fission into more than two cells within one cell cycle. The optimal conditions of light, temperature and pH (500 µmol photons m-2 s-1, 40 °C, and pH 3; respectively) for the strain Galdieria sulphuraria (Galdieri) Merola 002 were determined as a basis for synchronization experiments. For synchronization, the specific light/dark cycle, 16/8 h was identified as the precondition for investigating the cell cycle. The alga was successfully synchronized and the cell cycle was evaluated. G. sulphuraria attained two commitment points with midpoints at 10 and 13 h of the cell cycle, leading to two nuclear divisions, followed subsequently by division into four daughter cells. The daughter cells stayed in the mother cell wall until the beginning of the next light phase, when they were released. Accumulation of glycogen throughout the cell cycle was also described. The findings presented here bring a new contribution to our general understanding of the cell cycle in cyanidialean red algae, and specifically of the biotechnologically important species G. sulphuraria.
- Klíčová slova
- Galdieria, cell cycle, cell division, growth, light intensity, red algae, synchronization, temperature, trophic regimes,
- MeSH
- buněčný cyklus fyziologie MeSH
- heterotrofní procesy fyziologie MeSH
- kultivované buňky MeSH
- mikrořasy cytologie růst a vývoj MeSH
- Rhodophyta cytologie růst a vývoj MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Extensive in vivo replacement of hydrogen by deuterium, a stable isotope of hydrogen, induces a distinct stress response, reduces cell growth and impairs cell division in various organisms. Microalgae, including Chlamydomonas reinhardtii, a well-established model organism in cell cycle studies, are no exception. Chlamydomonas reinhardtii, a green unicellular alga of the Chlorophyceae class, divides by multiple fission, grows autotrophically and can be synchronized by alternating light/dark regimes; this makes it a model of first choice to discriminate the effect of deuterium on growth and/or division. Here, we investigate the effects of high doses of deuterium on cell cycle progression in C. reinhardtii. Synchronous cultures of C. reinhardtii were cultivated in growth medium containing 70 or 90% D2O. We characterize specific deuterium-induced shifts in attainment of commitment points during growth and/or division of C. reinhardtii, contradicting the role of the "sizer" in regulating the cell cycle. Consequently, impaired cell cycle progression in deuterated cultures causes (over)accumulation of starch and lipids, suggesting a promising potential for microalgae to produce deuterated organic compounds.
- Klíčová slova
- Chlamydomonas reinhardtii, cell cycle, cell division, commitment point, deuterium, heavy water, multiple fission, stress,
- MeSH
- buněčné dělení účinky léků MeSH
- buněčný cyklus účinky léků MeSH
- Chlamydomonas reinhardtii růst a vývoj metabolismus MeSH
- deuterium škodlivé účinky chemie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- deuterium MeSH
An increase in temperature can have a profound effect on the cell cycle and cell division in green algae, whereas growth and the synthesis of energy storage compounds are less influenced. In Chlamydomonas reinhardtii, laboratory experiments have shown that exposure to a supraoptimal temperature (39 °C) causes a complete block of nuclear and cellular division accompanied by an increased accumulation of starch. In this work we explore the potential of supraoptimal temperature as a method to promote starch production in C. reinhardtii in a pilot-scale photobioreactor. The method was successfully applied and resulted in an almost 3-fold increase in the starch content of C. reinhardtii dry matter. Moreover, a maximum starch content at the supraoptimal temperature was reached within 1-2 days, compared with 5 days for the control culture at the optimal temperature (30 °C). Therefore, supraoptimal temperature treatment promotes rapid starch accumulation and suggests a viable alternative to other starch-inducing methods, such as nutrient depletion. Nevertheless, technical challenges, such as bioreactor design and light availability within the culture, still need to be dealt with.
- Klíčová slova
- Chlamydomonas reinhardtii, cell cycle, microalgae, pilot-scale production, starch, supraoptimal temperature,
- MeSH
- biomasa * MeSH
- bioreaktory MeSH
- buněčný cyklus MeSH
- Chlamydomonas reinhardtii metabolismus MeSH
- fotobioreaktory * MeSH
- kultivační média MeSH
- mikrořasy MeSH
- průmyslová mikrobiologie metody MeSH
- škrob metabolismus MeSH
- světlo MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kultivační média MeSH
- škrob MeSH