Nejvíce citovaný článek - PubMed ID 32313219
Tailoring topological order and π-conjugation to engineer quasi-metallic polymers
Realization of topological quantum states in carbon nanostructures has recently emerged as a promising platform for hosting highly coherent and controllable quantum dot spin qubits. However, their adjustable manipulation remains elusive. Here, we report the atomically accurate control of the hybridization level of topologically protected quantum edge states emerging from topological interfaces in bottom-up-fabricated π-conjugated polymers. Our investigation employed a combination of low-temperature scanning tunneling microscopy and spectroscopy, along with high-resolution atomic force microscopy, to effectively modify the hybridization level of neighboring edge states by the selective dehydrogenation reaction of molecular units in a pentacene-based polymer and demonstrate their reversible character. Density functional theory, tight binding, and complete active space calculations for the Hubbard model were employed to support our findings, revealing that the extent of orbital overlap between the topological edge states can be finely tuned based on the geometry and electronic bandgap of the interconnecting region. These results demonstrate the utility of topological edge states as components for designing complex quantum arrangements for advanced electronic devices.
The development of functional organic molecules requires structures of increasing size and complexity, which are typically obtained by the covalent coupling of smaller building blocks. Herein, with the aid of high-resolution scanning tunneling microscopy/spectroscopy and density functional theory, the coupling of a sterically demanded pentacene derivative on Au(111) into fused dimers connected by non-benzenoid rings was studied. The diradical character of the products was tuned according to the coupling section. In particular, the antiaromaticity of cyclobutadiene as the coupling motif and its position within the structure play a decisive role in shifting the natural orbital occupancies toward a stronger diradical electronic character. Understanding these structure-property relations is desirable not only for fundamental reasons but also for designing new complex and functional molecular structures.
- Publikační typ
- časopisecké články MeSH
On-surface synthesis has revealed remarkable potential in the fabrication of atomically precise nanographenes. However, surface-assisted synthesis often involves multiple-step cascade reactions with competing pathways, leading to a limited yield of target nanographene products. Here, we devise a strategy for the ultrahigh-yield synthesis of circumcoronene molecules on Cu(111) via surface-assisted intramolecular dehydrogenation of the rationally designed precursor, followed by methyl radical-radical coupling and aromatization. An elegant electrostatic interaction between circumcoronenes and metallic surface drives their self-organization into an extended superlattice, as revealed by bond-resolved scanning probe microscopy measurements. Density functional theory and tight-binding calculations reveal that unique hexagonal zigzag topology of circumcoronenes, along with their periodic electrostatic landscape, confines two-dimensional electron gas in Cu(111) into a chiral electronic Kagome-honeycomb lattice with two emergent electronic flat bands. Our findings open up a new route for the high-yield fabrication of elusive nanographenes with zigzag topologies and their superlattices with possible nontrivial electronic properties.
- Publikační typ
- časopisecké články MeSH
We report on the synthesis and characterization of atomically precise one-dimensional diradical peripentacene polymers on a Au(111) surface. By means of high-resolution scanning probe microscopy complemented by theoretical simulations, we provide evidence of their magnetic properties, which arise from the presence of two unpaired spins at their termini. Additionally, we probe a transition of their magnetic properties related to the length of the polymer. Peripentacene dimers exhibit an antiferromagnetic (S=0) singlet ground state. They are characterized by singlet-triplet spin-flip inelastic excitations with an effective exchange coupling (Jeff ) of 2.5 meV, whereas trimers and longer peripentacene polymers reveal a paramagnetic nature and feature Kondo fingerprints at each terminus due to the unpaired spin. Our work provides access to the precise fabrication of polymers featuring diradical character which are potentially useful in carbon-based optoelectronics and spintronics.
- Klíčová slova
- cumulenes, diradical polymers, nc-AFM, scanning tunneling microscopy, surface chemistry,
- Publikační typ
- časopisecké články MeSH
The development of synthetic strategies to engineer π-conjugated polymers is of paramount importance in modern chemistry and materials science. Here we introduce a synthetic protocol based on the search for specific vibrational modes through an appropriate tailoring of the π-conjugation of the precursors, in order to increase the attempt frequency of a chemical reaction. First, we design a 1D π-conjugated polymer on Au(111), which is based on bisanthene monomers linked by cumulene bridges that tune specific vibrational modes. In a second step, upon further annealing, such vibrational modes steer the twofold cyclization reaction between adjacent bisanthene moieties, which gives rise to a long pentalene-bridged conjugated ladder polymer featuring a low bandgap. In addition, high resolution atomic force microscopy allows us to identify by atomistic insights the resonance form of the polymer, thus confirming the validity of the Glidewell and Lloyd´s rules for aromaticity. This on-surface synthetic strategy may stimulate exploiting previously precluded reactions towards π-conjugated polymers with specific structures and properties.
- Publikační typ
- časopisecké články MeSH