Nejvíce citovaný článek - PubMed ID 32485963
Naturally Occurring and Artificial N9-Cytokinin Conjugates: From Synthesis to Biological Activity and Back
Common centaury (Centaurium eryhtraea Rafn) is a medicinal plant species with vigorous morphogenic potential in vitro. The process of spontaneous shoot regeneration in a solid root culture is characteristic for this plant species. In this context, the aim of this work was to investigate the dynamic changes of endogenous phytohormones and carbohydrates content in root explants at different time points (0, 2, 4, 7, 14, 21, 28, and 60 days) during spontaneous centaury morphogenesis in vitro. Detailed analysis of cytokinins (CKs) showed that trans-zeatin (tZ) was the major bioactive CK at all time points. The corresponding riboside, tZ9R, was also determined in the majority of the identified transport forms, at all time-points. Further analysis of endogenous auxin revealed a significant increase in endogenous indole-3-acetic acid (IAA) after 21 days, when a huge jump in the ratio of IAA/bioactive CKs was also observed. The maximum total soluble sugar content was measured after 14 days, while a significant decrease was determined after 21 days, when the first regenerated adventitious shoots appeared. This undoubtedly indicates an increased energy requirement prior to the actual regeneration of the shoots. The obtained results indicate that the period from day 14 to day 21 involves the most dramatic disturbances in endogenous bioactive CKs, IAA and carbohydrate balance, which are very important and valuable factors for the onset of shoot regeneration.
- Klíčová slova
- auxin, centaury, cytokinin, morphogenesis, phytohormone, soluble sugars,
- Publikační typ
- časopisecké články MeSH
De novo shoot organogenesis (DNSO) is a procedure commonly used for the in vitro regeneration of shoots from a variety of plant tissues. Shoot regeneration occurs on nutrient media supplemented with the plant hormones cytokinin (CK) and auxin, which play essential roles in this process, and genes involved in their signaling cascades act as master regulators of the different phases of shoot regeneration. In the last 20 years, the genetic regulation of DNSO has been characterized in detail. However, as of today, the CK and auxin signaling events associated with shoot regeneration are often interpreted as a consequence of these hormones simply being present in the regeneration media, whereas the roles for their prior uptake and transport into the cultivated plant tissues are generally overlooked. Additionally, sucrose, commonly added to the regeneration media as a carbon source, plays a signaling role and has been recently shown to interact with CK and auxin and to affect the efficiency of shoot regeneration. In this review, we provide an integrative interpretation of the roles for CK and auxin in the process of DNSO, adding emphasis on their uptake from the regeneration media and their interaction with sucrose present in the media to their complex signaling outputs that mediate shoot regeneration.
- Klíčová slova
- DNSO, auxin, cytokinin, de novo shoot organogenesis, gene regulatory network, hormone uptake, shoot regeneration, sucrose, transport,
- MeSH
- cytokininy metabolismus MeSH
- kyseliny indoloctové metabolismus MeSH
- organogeneze rostlin * MeSH
- regulátory růstu rostlin metabolismus MeSH
- výhonky rostlin cytologie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- cytokininy MeSH
- kyseliny indoloctové MeSH
- regulátory růstu rostlin MeSH
Cytokinins are a class of phytohormones, signalling molecules specific to plants. They act as regulators of diverse physiological processes in complex signalling pathways. It is necessary for plants to continuously regulate cytokinin distribution among different organs, tissues, cells, and compartments. Such regulatory mechanisms include cytokinin biosynthesis, metabolic conversions and degradation, as well as cytokinin membrane transport. In our review, we aim to provide a thorough picture of the latter. We begin by summarizing cytokinin structures and physicochemical properties. Then, we revise the elementary thermodynamic and kinetic aspects of cytokinin membrane transport. Next, we review which membrane-bound carrier proteins and protein families recognize cytokinins as their substrates. Namely, we discuss the families of "equilibrative nucleoside transporters" and "purine permeases", which translocate diverse purine-related compounds, and proteins AtPUP14, AtABCG14, AtAZG1, and AtAZG2, which are specific to cytokinins. We also address long-distance cytokinin transport. Putting all these pieces together, we finally discuss cytokinin distribution as a net result of these processes, diverse in their physicochemical nature but acting together to promote plant fitness.
- Klíčová slova
- ABCG14, AZG1, AZG2, PUP14, cytokinin distribution, cytokinin hydrophobicity, cytokinin transport, membrane transport,
- MeSH
- Arabidopsis metabolismus MeSH
- biologický transport MeSH
- buněčná membrána metabolismus MeSH
- cytokininy metabolismus MeSH
- homeostáza MeSH
- hydrofobní a hydrofilní interakce MeSH
- kinetika MeSH
- kořeny rostlin metabolismus MeSH
- membránové transportní proteiny metabolismus MeSH
- proteiny huseníčku genetika MeSH
- regulace genové exprese u rostlin MeSH
- regulátory růstu rostlin metabolismus MeSH
- signální transdukce fyziologie MeSH
- termodynamika MeSH
- výhonky rostlin metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- cytokininy MeSH
- membránové transportní proteiny MeSH
- proteiny huseníčku MeSH
- regulátory růstu rostlin MeSH