Nejvíce citovaný článek - PubMed ID 32520524
Aromatic Cytokinin Arabinosides Promote PAMP-like Responses and Positively Regulate Leaf Longevity
Plants can acquire an improved resistance against pathogen attacks by exogenous application of natural or artificial compounds. In a process called chemical priming, application of these compounds causes earlier, faster and/or stronger responses to pathogen attacks. The primed defense may persist over a stress-free time (lag phase) and may be expressed also in plant organs that have not been directly treated with the compound. This review summarizes the current knowledge on the signaling pathways involved in chemical priming of plant defense responses to pathogen attacks. Chemical priming in induced systemic resistance (ISR) and systemic acquired resistance (SAR) is highlighted. The roles of the transcriptional coactivator NONEXPRESSOR OF PR1 (NPR1), a key regulator of plant immunity, induced resistance (IR) and salicylic acid signaling during chemical priming are underlined. Finally, we consider the potential usage of chemical priming to enhance plant resistance to pathogens in agriculture.
- Klíčová slova
- Arabidopsis thaliana, biotic stress, chemical priming, defense priming, induced systemic resistance, pathogen attack, priming, systemic acquired resistance,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Plasmodiophora brassicae is an obligate biotrophic pathogen causing clubroot disease in cruciferous plants. Infected plant organs are subject to profound morphological changes, the roots form characteristic galls, and the leaves are chlorotic and abscise. The process of gall formation is governed by timely changes in the levels of endogenous plant hormones that occur throughout the entire life cycle of the clubroot pathogen. The homeostasis of two plant hormones, cytokinin and auxin, appears to be crucial for club development. To investigate the role of cytokinin and auxin in gall formation, we used metabolomic and transcriptomic profiling of Arabidopsis thaliana infected with clubroot, focusing on the late stages of the disease, where symptoms were more pronounced. Loss-of-function mutants of three cytokinin receptors, AHK2, AHK3, and CRE1/AHK4, were employed to further study the homeostasis of cytokinin in response to disease progression; ahk double mutants developed characteristic symptoms of the disease, albeit with varying intensity. The most susceptible to clubroot disease was the ahk3 ahk4 double mutant, as revealed by measuring its photosynthetic performance. Quantification of phytohormone levels and pharmacological treatment with the cytokinin antagonist PI-55 showed significant changes in the levels of endogenous cytokinin and auxin, which was manifested by both enhanced and reduced development of disease symptoms in different genotypes.
- Klíčová slova
- PI-55, Plasmodiophora brassicae, auxin, clubroot, cytokinin, photosynthesis,
- MeSH
- Arabidopsis * genetika MeSH
- cytokininy MeSH
- kyseliny indoloctové MeSH
- proteiny huseníčku * genetika MeSH
- regulátory růstu rostlin MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytokininy MeSH
- kyseliny indoloctové MeSH
- proteiny huseníčku * MeSH
- regulátory růstu rostlin MeSH
To cope with biotic and abiotic stress conditions, land plants have evolved several levels of protection, including delicate defense mechanisms to respond to changes in the environment. The benefits of inducible defense responses can be further augmented by defense priming, which allows plants to respond to a mild stimulus faster and more robustly than plants in the naïve (non-primed) state. Priming provides a low-cost protection of agriculturally important plants in a relatively safe and effective manner. Many different organic and inorganic compounds have been successfully tested to induce resistance in plants. Among the plethora of commonly used physicochemical techniques, priming by plant growth regulators (phytohormones and their derivatives) appears to be a viable approach with a wide range of applications. While several classes of plant hormones have been exploited in agriculture with promising results, much less attention has been paid to cytokinin, a major plant hormone involved in many biological processes including the regulation of photosynthesis. Cytokinins have been long known to be involved in the regulation of chlorophyll metabolism, among other functions, and are responsible for delaying the onset of senescence. A comprehensive overview of the possible mechanisms of the cytokinin-primed defense or stress-related responses, especially those related to photosynthesis, should provide better insight into some of the less understood aspects of this important group of plant growth regulators.
- Klíčová slova
- ROS, chlorophyll fluorescence, cytokinin, photosynthesis, priming, stomata, stress,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Leaf senescence, accompanied by chlorophyll breakdown, chloroplast degradation and inhibition of photosynthesis, can be suppressed by an exogenous application of cytokinins. Two aromatic cytokinin arabinosides (6-benzylamino-9-β-d-arabinofuranosylpurines; BAPAs), 3-hydroxy- (3OHBAPA) and 3-methoxy- (3MeOBAPA) derivatives, have recently been found to possess high anti-senescence activity. Interestingly, their effect on the maintenance of chlorophyll content and maximal quantum yield of photosystem II (PSII) in detached dark-adapted leaves differed quantitatively in wheat (Triticum aestivum L. cv. Aranka) and Arabidopsis (Arabidopsisthaliana L. (Col-0)). In this work, we have found that the anti-senescence effects of 3OHBAPA and 3MeOBAPA in wheat and Arabidopsis also differ in other parameters, including the maintenance of carotenoid content and chloroplasts, rate of reduction of primary electron acceptor of PSII (QA) as well as electron transport behind QA, and partitioning of absorbed light energy in light-adapted leaves. In wheat, 3OHBAPA had a higher protective effect than 3MeOBAPA, whereas in Arabidopsis, 3MeOBAPA was the more efficient derivative. We have found that the different anti-senescent activity of 3OHBAPA and 3MeOBAPA was coupled to different ethylene production in the treated leaves: the lower the ethylene production, the higher the anti-senescence activity. 3OHBAPA and 3MeOBAPA also efficiently protected the senescing leaves of wheat and Arabidopsis against oxidative damage induced by both H2O2 and high-light treatment, which could also be connected with the low level of ethylene production.
- Klíčová slova
- Arabidopsis, chlorophyll fluorescence, cytokinin derivative, ethylene, oxidative stress, photosystem II, phytohormone, senescence, wheat,
- MeSH
- Arabidopsis účinky léků růst a vývoj metabolismus MeSH
- cytokininy farmakologie MeSH
- ethyleny metabolismus MeSH
- fotosyntéza MeSH
- listy rostlin účinky léků růst a vývoj metabolismus MeSH
- pšenice účinky léků růst a vývoj metabolismus MeSH
- regulátory růstu rostlin farmakologie MeSH
- stárnutí buněk * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cytokininy MeSH
- ethylene MeSH Prohlížeč
- ethyleny MeSH
- regulátory růstu rostlin MeSH
Cytokinins and their sugar or non-sugar conjugates are very active growth-promoting factors in plants, although they occur at very low concentrations. These compounds have been identified in numerous plant species. This review predominantly focuses on 9-substituted adenine-based cytokinin conjugates, both artificial and endogenous, sugar and non-sugar, and their roles in plants. Acquired information about their biological activities, interconversions, and metabolism improves understanding of their mechanisms of action and functions in planta. Although a number of 9-substituted cytokinins occur endogenously, many have also been prepared in laboratories to facilitate the clarification of their physiological roles and the determination of their biological properties. Here, we chart advances in knowledge of 9-substituted cytokinin conjugates from their discovery to current understanding and reciprocal interactions between biological properties and associated structural motifs. Current organic chemistry enables preparation of derivatives with better biological properties, such as improved anti-senescence, strong cell division stimulation, shoot forming, or more persistent stress tolerance compared to endogenous or canonical cytokinins. Many artificial cytokinin conjugates stimulate higher mass production than naturally occurring cytokinins, improve rooting, or simply have high stability or bioavailability. Thus, knowledge of the biosynthesis, metabolism, and activity of 9-substituted cytokinins in various plant species extends the scope for exploiting both natural and artificially prepared cytokinins in plant biotechnology, tissue culture, and agriculture.
- Klíčová slova
- D-arabinoside, cytokinin nucleosides, cytokinin sugar conjugates, disaccharides, glucoside, meta-topolin, plant biotechnology, plant tissue culture, riboside, zeatin,
- MeSH
- adenin chemie metabolismus MeSH
- cytokininy biosyntéza chemie metabolismus MeSH
- molekulární struktura MeSH
- rostliny chemie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- adenin MeSH
- cytokininy MeSH