Nejvíce citovaný článek - PubMed ID 32587401
Mycobacterial HelD is a transcription factor that recycles stalled RNAP by dissociating it from nucleic acids and, if present, from the antibiotic rifampicin. The rescued RNAP, however, must disengage from HelD to participate in subsequent rounds of transcription. The mechanism of release is unknown. We show that HelD from Mycobacterium smegmatis forms a complex with RNAP associated with the primary sigma factor σA and transcription factor RbpA but not CarD. We solve several structures of RNAP-σA-RbpA-HelD without and with promoter DNA. These snapshots capture HelD during transcription initiation, describing mechanistic aspects of HelD release from RNAP and its protective effect against rifampicin. Biochemical evidence supports these findings, defines the role of ATP binding and hydrolysis by HelD in the process, and confirms the rifampicin-protective effect of HelD. Collectively, these results show that when HelD is present during transcription initiation, the process is protected from rifampicin until the last possible moment.
- MeSH
- adenosintrifosfát metabolismus MeSH
- bakteriální proteiny * metabolismus genetika MeSH
- DNA řízené RNA-polymerasy * metabolismus MeSH
- genetická transkripce MeSH
- iniciace genetické transkripce * MeSH
- Mycobacterium smegmatis * metabolismus genetika MeSH
- promotorové oblasti (genetika) * MeSH
- regulace genové exprese u bakterií MeSH
- rifampin * farmakologie MeSH
- sigma faktor * metabolismus genetika MeSH
- transkripční faktory metabolismus MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adenosintrifosfát MeSH
- bakteriální proteiny * MeSH
- DNA řízené RNA-polymerasy * MeSH
- rifampin * MeSH
- sigma faktor * MeSH
- transkripční faktory MeSH
Rifampicin is a clinically important antibiotic that binds to, and blocks the DNA/RNA channel of bacterial RNA polymerase (RNAP). Stalled, nonfunctional RNAPs can be removed from DNA by HelD proteins; this is important for maintenance of genome integrity. Recently, it was reported that HelD proteins from high G+C Actinobacteria, called HelR, are able to dissociate rifampicin-stalled RNAPs from DNA and provide rifampicin resistance. This is achieved by the ability of HelR proteins to dissociate rifampicin from RNAP. The HelR-mediated mechanism of rifampicin resistance is discussed here, and the roles of HelD/HelR in the transcriptional cycle are outlined. Moreover, the possibility that the structurally similar HelD proteins from low G+C Firmicutes may be also involved in rifampicin resistance is explored. Finally, the discovery of the involvement of HelR in rifampicin resistance provides a blueprint for analogous studies to reveal novel mechanisms of bacterial antibiotic resistance.
- Klíčová slova
- HelD/HelR, RNA polymerase, antibiotics, bacteria, resistance, rifampicin,
- MeSH
- antibakteriální látky farmakologie MeSH
- Bacteria * genetika metabolismus MeSH
- bakteriální léková rezistence MeSH
- DNA řízené RNA-polymerasy genetika metabolismus MeSH
- DNA MeSH
- rifampin * farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky MeSH
- DNA řízené RNA-polymerasy MeSH
- DNA MeSH
- rifampin * MeSH
Environmental microorganisms usually exhibit a high level of genomic plasticity and metabolic versatility that allow them to be well-adapted to diverse environmental challenges. This study used shotgun metagenomics to decipher the functional and metabolic attributes of an uncultured Paracoccus recovered from a polluted soil metagenome and determine whether the detected attributes are influenced by the nature of the polluted soil. Functional and metabolic attributes of the uncultured Paracoccus were elucidated via functional annotation of the open reading frames (ORFs) of its contig. Functional tools deployed for the analysis include KEGG, KEGG KofamKOALA, Clusters of Orthologous Groups of proteins (COG), Comprehensive Antibiotic Resistance Database (CARD), and the Antibiotic Resistance Gene-ANNOTation (ARG-ANNOT V6) for antibiotic resistance genes, TnCentral for transposable element, Transporter Classification Database (TCDB) for transporter genes, and FunRich for gene enrichment analysis. Analyses revealed the preponderance of ABC transporter genes responsible for the transport of oligosaccharides (malK, msmX, msmK, lacK, smoK, aglK, togA, thuK, treV, msiK), monosaccharides (glcV, malK, rbsC, rbsA, araG, ytfR, mglA), amino acids (thiQ, ynjD, thiZ, glnQ, gluA, gltL, peb1C, artP, aotP, bgtA, artQ, artR), and several others. Also detected are transporter genes for inorganic/organic nutrients like phosphate/phosphonate, nitrate/nitrite/cyanate, sulfate/sulfonate, bicarbonate, and heavy metals such as nickel/cobalt, molybdate/tungstate, and iron, among others. Antibiotic resistance genes that mediate efflux, inactivation, and target protection were detected, while transposable elements carrying resistance phenotypes for antibiotics and heavy metals were also annotated. The findings from this study have established the resilience, adaptability, and survivability of the uncultured Paracoccus in the hydrocarbon-polluted soil.
- Klíčová slova
- ABC transporters, Antibiotic resistance genes, Heavy metal resistance genes, Hydrocarbon-polluted soil, Transposable elements, Uncultured Paracoccus,
- MeSH
- ABC transportéry genetika MeSH
- antibakteriální látky farmakologie MeSH
- bakteriální toxiny * MeSH
- Clostridioides difficile * genetika MeSH
- metagenom MeSH
- Paracoccus * genetika MeSH
- půda chemie MeSH
- těžké kovy * MeSH
- transpozibilní elementy DNA MeSH
- uhlovodíky MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ABC transportéry MeSH
- antibakteriální látky MeSH
- bakteriální toxiny * MeSH
- půda MeSH
- těžké kovy * MeSH
- transpozibilní elementy DNA MeSH
- uhlovodíky MeSH
HflX is a ubiquitous bacterial GTPase that splits and recycles stressed ribosomes. In addition to HflX, Listeria monocytogenes contains a second HflX homolog, HflXr. Unlike HflX, HflXr confers resistance to macrolide and lincosamide antibiotics by an experimentally unexplored mechanism. Here, we have determined cryo-EM structures of L. monocytogenes HflXr-50S and HflX-50S complexes as well as L. monocytogenes 70S ribosomes in the presence and absence of the lincosamide lincomycin. While the overall geometry of HflXr on the 50S subunit is similar to that of HflX, a loop within the N-terminal domain of HflXr, which is two amino acids longer than in HflX, reaches deeper into the peptidyltransferase center. Moreover, unlike HflX, the binding of HflXr induces conformational changes within adjacent rRNA nucleotides that would be incompatible with drug binding. These findings suggest that HflXr confers resistance using an allosteric ribosome protection mechanism, rather than by simply splitting and recycling antibiotic-stalled ribosomes.
- MeSH
- antibakteriální látky farmakologie metabolismus MeSH
- antibiotická rezistence MeSH
- linkosamidy farmakologie MeSH
- Listeria monocytogenes * genetika MeSH
- proteiny vázající GTP genetika MeSH
- ribozomy genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky MeSH
- linkosamidy MeSH
- proteiny vázající GTP MeSH
Vga(A) protein variants confer different levels of resistance to lincosamides, streptogramin A, and pleuromutilins (LSAP) by displacing antibiotics from the ribosome. Here, we show that expression of vga(A) variants from Staphylococcus haemolyticus is regulated by cis-regulatory RNA in response to the LSAP antibiotics by the mechanism of ribosome-mediated attenuation. The specificity of induction depends on Vga(A)-mediated resistance rather than on the sequence of the riboregulator. Fine tuning between Vga(A) activity and its expression in response to the antibiotics may contribute to the selection of more potent Vga(A) variants because newly acquired mutation can be immediately phenotypically manifested.
- Klíčová slova
- ABCF proteins, Staphylococcus haemolyticus, Vga(A), antibiotic resistance, clindamycin, lincosamides, pleuromutilins, regulation of gene expression, ribosome-mediated attenuation,
- MeSH
- antibakteriální látky farmakologie MeSH
- bakteriální proteiny genetika MeSH
- linkosamidy MeSH
- makrolidy MeSH
- mnohočetná bakteriální léková rezistence * MeSH
- ribozomy genetika MeSH
- streptogramin A * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky MeSH
- bakteriální proteiny MeSH
- linkosamidy MeSH
- makrolidy MeSH
- streptogramin A * MeSH