Nejvíce citovaný článek - PubMed ID 32652020
The Current Status of Research on Gibberellin Biosynthesis
Reduced height (Rht) genes have revolutionised wheat cultivation, but they can compromise freezing tolerance, and only a few alleles are in use. Thus, evaluating the role of other Rht alleles in stress responses is crucial. Far-red supplementation of white light (W+FR) can induce pre-hardening in cereals at 15°C. However, the relevant effect of blue light enrichment (W+B) is poorly described. This study investigates the influence of W+FR or W+B exposure in young winter wheat leaves of a tall (wild-type, rht12) and a dwarf, gibberellin-deficient (near-isogenic line, Rht12) genotype in cv. Maris Huntsman background over 10 days at 15°C. The main objectives were to investigate the relationship between light quality, gibberellin homeostasis, and freezing tolerance. Key parameters such as frost injury, hormonal pools and the expression of relevant genes were examined. Results provided evidence about the involvement of Rht alleles in the basal freezing tolerance of wheat leaves from the side of gibberellin availability. It was revealed that W+FR and W+B treatments partially rescued the freezing-sensitive phenotype of Rht12 leaves, suggesting a potential compensatory mechanism. Analysis of gibberellic acid (GA) metabolism indicated differential responses to light treatments between the Rht12 and wild-type leaves, with implications for freezing tolerance. Moreover, alterations in hormone levels, including jasmonic acid (JA) and salicylic acid (SA), were observed, highlighting the complex interplay between light signalling and hormonal regulation in wheat. Overall, these findings suggest that manipulating light responses may offer a strategy to enhance freezing tolerance in gibberellin-deficient dwarf wheat genotypes.
- MeSH
- červené světlo MeSH
- cyklopentany MeSH
- genotyp MeSH
- gibereliny metabolismus MeSH
- listy rostlin * účinky záření fyziologie metabolismus MeSH
- oxylipiny MeSH
- pšenice * fyziologie účinky záření genetika metabolismus MeSH
- regulace genové exprese u rostlin účinky záření MeSH
- regulátory růstu rostlin * metabolismus MeSH
- světlo * MeSH
- zmrazování MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cyklopentany MeSH
- gibereliny MeSH
- jasmonic acid MeSH Prohlížeč
- oxylipiny MeSH
- regulátory růstu rostlin * MeSH
BACKGROUND: Semi-dwarfing alleles are used widely in cereals to confer improved lodging resistance and assimilate partitioning. The most widely deployed semi-dwarfing alleles in rice and barley encode the gibberellin (GA)-biosynthetic enzyme GA 20-OXIDASE2 (GA20OX2). The hexaploid wheat genome carries three homoeologous copies of GA20OX2, and because of functional redundancy, loss-of-function alleles of a single homoeologue would not be selected in wheat breeding programmes. Instead, approximately 70% of wheat cultivars carry gain-of-function mutations in REDUCED HEIGHT 1 (RHT1) genes that encode negative growth regulators and are degraded in response to GA. Semi-dwarf Rht-B1b or Rht-D1b alleles encode proteins that are insensitive to GA-mediated degradation. However, because RHT1 is expressed ubiquitously these alleles have pleiotropic effects that confer undesirable traits in some environments. RESULTS: We have applied reverse genetics to combine loss-of-function alleles in all three homoeologues of wheat GA20OX2 and its paralogue GA20OX1 and evaluated their performance in three years of field trials. ga20ox1 mutants exhibited a mild height reduction (approximately 3%) suggesting GA20OX1 plays a minor role in stem elongation in wheat. ga20ox2 mutants have reduced GA1 content and are 12-32% shorter than their wild-type segregants, comparable to the effect of the Rht-D1b 'Green Revolution' allele. The ga20ox2 mutants showed no significant negative effects on yield components in the spring wheat variety 'Cadenza'. CONCLUSIONS: Our study demonstrates that chemical mutagenesis can expand genetic variation in polyploid crops to uncover novel alleles despite the difficulty in identifying appropriate mutations for some target genes and the negative effects of background mutations. Field experiments demonstrate that mutations in GA20OX2 reduce height in wheat, but it will be necessary to evaluate the effect of these alleles in different genetic backgrounds and environments to determine their value in wheat breeding as alternative semi-dwarfing alleles.
- Klíčová slova
- Dwarfing alleles, Gibberellin, Green revolution, TILLING, Wheat,
- MeSH
- alely MeSH
- fenotyp * MeSH
- gibereliny metabolismus MeSH
- mutace MeSH
- oxygenasy se smíšenou funkcí genetika metabolismus MeSH
- pšenice * genetika MeSH
- rostlinné geny MeSH
- rostlinné proteiny * genetika metabolismus MeSH
- rýže (rod) genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- gibberellin, 2-oxoglutarate-oxygen oxidoreductase (20-hydroxylating, oxidizing) MeSH Prohlížeč
- gibereliny MeSH
- oxygenasy se smíšenou funkcí MeSH
- rostlinné proteiny * MeSH
It has been almost a century since biologically active gibberellin (GA) was isolated. Here, we give a historical overview of the early efforts in establishing the GA biosynthesis and catabolism pathway, characterizing the enzymes for GA metabolism, and elucidating their corresponding genes. We then highlight more recent studies that have identified the GA receptors and early GA signaling components (DELLA repressors and F-box activators), determined the molecular mechanism of DELLA-mediated transcription reprograming, and revealed how DELLAs integrate multiple signaling pathways to regulate plant vegetative and reproductive development in response to internal and external cues. Finally, we discuss the GA transporters and their roles in GA-mediated plant development.
- MeSH
- gibereliny * metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- regulátory růstu rostlin metabolismus MeSH
- rostlinné proteiny metabolismus genetika MeSH
- signální transdukce MeSH
- vývoj rostlin genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- gibereliny * MeSH
- regulátory růstu rostlin MeSH
- rostlinné proteiny MeSH
Although the pesticide hexachlorocyclohexane (HCH) and its isomers have long been banned, their presence in the environment is still reported worldwide. In this study, we investigated the bioaccumulation potential of α, β, and δ hexachlorocyclohexane (HCH) isomers in black alder saplings (Alnus glutinosa) to assess their environmental impact. Each isomer, at a concentration of 50 mg/kg, was individually mixed with soil, and triplicate setups, including a control without HCH, were monitored for three months with access to water. Gas chromatography-mass spectrometry revealed the highest concentrations of HCH isomers in roots, decreasing towards branches and leaves, with δ-HCH exhibiting the highest uptake (roots-14.7 µg/g, trunk-7.2 µg/g, branches-1.53 µg/g, leaves-1.88 µg/g). Interestingly, α-HCH was detected in high concentrations in β-HCH polluted soil. Phytohormone analysis indicated altered cytokinin, jasmonate, abscisate, and gibberellin levels in A. glutinosa in response to HCH contamination. In addition, amplicon 16S rRNA sequencing was used to study the rhizosphere and soil microbial community. While rhizosphere microbial populations were generally similar in all HCH isomer samples, Pseudomonas spp. decreased across all HCH-amended samples, and Tomentella dominated in β-HCH and control rhizosphere samples but was lowest in δ-HCH samples.
- MeSH
- biodegradace MeSH
- hexachlorcyklohexan analýza MeSH
- látky znečišťující půdu * analýza MeSH
- olše * MeSH
- půda MeSH
- RNA ribozomální 16S genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- beta-hexachlorocyclohexane MeSH Prohlížeč
- delta-hexachlorocyclohexane MeSH Prohlížeč
- hexachlorcyklohexan MeSH
- látky znečišťující půdu * MeSH
- půda MeSH
- RNA ribozomální 16S MeSH
The field of plant hormonomics focuses on the qualitative and quantitative analysis of the hormone complement in plant samples, akin to other omics sciences. Plant hormones, alongside primary and secondary metabolites, govern vital processes throughout a plant's lifecycle. While active hormones have received significant attention, studying all related compounds provides valuable insights into internal processes. Conventional single-class plant hormone analysis employs thorough sample purification, short analysis and triple quadrupole tandem mass spectrometry. Conversely, comprehensive hormonomics analysis necessitates minimal purification, robust and efficient separation and better-performing mass spectrometry instruments. This review summarizes the current status of plant hormone analysis methods, focusing on sample preparation, advances in chromatographic separation and mass spectrometric detection, including a discussion on internal standard selection and the potential of derivatization. Moreover, current approaches for assessing the spatiotemporal distribution are evaluated. The review touches on the legitimacy of the term plant hormonomics by exploring the current status of methods and outlining possible future trends.
- Klíčová slova
- Hormonomics, Internal standard, Liquid chromatography, Mass spectrometry, Matrix effect, Metabolomics, Omics, Plant hormone, Solid phase extraction,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Dormancy and heteromorphism are innate seed properties that control germination timing through adaptation to the prevailing environment. The degree of variation in dormancy depth within a seed population differs considerably depending on the genotype and maternal environment. Dormancy is therefore a key trait of annual weeds to time seedling emergence across seasons. Seed heteromorphism, the production of distinct seed morphs (in color, mass or other morphological characteristics) on the same individual plant, is considered to be a bet-hedging strategy in unpredictable environments. Heteromorphic species evolved independently in several plant families and the distinct seed morphs provide an additional degree of variation. Here we conducted a comparative morphological and molecular analysis of the dimorphic seeds (black and brown) of the Amaranthaceae weed Chenopodium album. Freshly harvested black and brown seeds differed in their dormancy and germination responses to ambient temperature. The black seed morph of seedlot #1 was dormant and 2/3rd of the seed population had non-deep physiological dormancy which was released by after-ripening (AR) or gibberellin (GA) treatment. The deeper dormancy of the remaining 1/3rd non-germinating seeds required in addition ethylene and nitrate for its release. The black seeds of seedlot #2 and the brown seed morphs of both seedlots were non-dormant with 2/3rd of the seeds germinating in the fresh mature state. The dimorphic seeds and seedlots differed in testa (outer seed coat) thickness in that thick testas of black seeds of seedlot #1 conferred coat-imposed dormancy. The dimorphic seeds and seedlots differed in their abscisic acid (ABA) and GA contents in the dry state and during imbibition in that GA biosynthesis was highest in brown seeds and ABA degradation was faster in seedlot #2. Chenopodium genes for GA and ABA metabolism were identified and their distinct transcript expression patterns were quantified in dry and imbibed C. album seeds. Phylogenetic analyses of the Amaranthaceae sequences revealed a high proportion of expanded gene families within the Chenopodium genus. The identified hormonal, molecular and morphological mechanisms and dormancy variation of the dimorphic seeds of C. album and other Amaranthaceae are compared and discussed as adaptations to variable and stressful environments.
- Klíčová slova
- abscisic acid, coat-imposed dormancy, gibberellins, hormone metabolism, seed coat properties, seed heteromorphism, thermal time modelling, weed seed bank,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Acidic phytohormones are small molecules controlling many physiological functions in plants. A comprehensive picture of their profiles including the active forms, precursors and metabolites provides an important insight into ongoing physiological processes and is essential for many biological studies performed on plants. RESULTS: A high-throughput sample preparation method for liquid chromatography-tandem mass spectrometry determination of 25 acidic phytohormones classed as auxins, jasmonates, abscisates and salicylic acid was optimised. The method uses a small amount of plant tissue (less than 10 mg fresh weight) and acidic extraction in 1 mol/L formic acid in 10% aqueous methanol followed by miniaturised purification on reverse phase sorbent accommodated in pipette tips organised in a 3D printed 96-place interface, capable of processing 192 samples in one run. The method was evaluated in terms of process efficiency, recovery and matrix effects as well as establishing validation parameters such as accuracy and precision. The applicability of the method in relation to the amounts of sample collected from distantly related plant species was evaluated and the results for phytohormone profiles are discussed in the context of literature reports. CONCLUSION: The method developed enables high-throughput profiling of acidic phytohormones with minute amounts of plant material, and it is suitable for large scale interspecies studies.
- Klíčová slova
- 3D printing, Evolutionarily distant plant species, High-throughput, In-tip microSPE, Liquid chromatography, Mass spectrometry, Miniaturisation, Plant hormones,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Bread wheat (Triticum aestivum) is a major source of nutrition globally, but yields can be seriously compromised by water limitation. Redistribution of growth between shoots and roots is a common response to drought, promoting plant survival, but reducing yield. Gibberellins (GAs) are necessary for shoot and root elongation, but roots maintain growth at lower GA concentrations compared with shoots, making GA a suitable hormone for mediating this growth redistribution. In this study, the effect of progressive drought on GA content was determined in the base of the 4th leaf and root tips of wheat seedlings, containing the growing regions, as well as in the remaining leaf and root tissues. In addition, the contents of other selected hormones known to be involved in stress responses were determined. Transcriptome analysis was performed on equivalent tissues and drought-associated differential expression was determined for hormone-related genes. RESULTS: After 5 days of applying progressive drought to 10-day old seedlings, the length of leaf 4 was reduced by 31% compared with watered seedlings and this was associated with significant decreases in the concentrations of bioactive GA1 and GA4 in the leaf base, as well as of their catabolites and precursors. Root length was unaffected by drought, while GA concentrations were slightly, but significantly higher in the tips of droughted roots compared with watered plants. Transcripts for the GA-inactivating gene TaGA2ox4 were elevated in the droughted leaf, while those for several GA-biosynthesis genes were reduced by drought, but mainly in the non-growing region. In response to drought the concentrations of abscisic acid, cis-zeatin and its riboside increased in all tissues, indole-acetic acid was unchanged, while trans-zeatin and riboside, jasmonate and salicylic acid concentrations were reduced. CONCLUSIONS: Reduced leaf elongation and maintained root growth in wheat seedlings subjected to progressive drought were associated with attenuated and increased GA content, respectively, in the growing regions. Despite increased TaGA2ox4 expression, lower GA levels in the leaf base of droughted plants were due to reduced biosynthesis rather than increased catabolism. In contrast to GA, the other hormones analysed responded to drought similarly in the leaf and roots, indicating organ-specific differential regulation of GA metabolism in response to drought.
- Klíčová slova
- Drought, gene expression, gibberellins, plant hormones, wheat,
- MeSH
- gibereliny metabolismus MeSH
- hormony metabolismus MeSH
- kořeny rostlin metabolismus MeSH
- listy rostlin metabolismus MeSH
- období sucha MeSH
- pšenice * metabolismus MeSH
- semenáček * metabolismus MeSH
- voda metabolismus MeSH
- zeatin MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- gibereliny MeSH
- hormony MeSH
- voda MeSH
- zeatin MeSH