Most cited article - PubMed ID 32785020
Preparation, Thermal Analysis, and Mechanical Properties of Basalt Fiber/Epoxy Composites
This study is aimed at developing a fibre-reinforced polymer composite with a high bio-based content and to investigate its mechanical properties. A novel basalt fibre-reinforced polymer (BFRP) composite with bio-based matrix modified with different contents of star-like n-butyl methacrylate (n-BMA) block glycidyl methacrylate (GMA) copolymer has been developed. n-BMA blocks have flexible butyl units, while the epoxide group of GMA makes it miscible with the epoxy resin and is involved in the crosslinking network. The effect of the star-like polymer on the rheological behaviour of the epoxy was studied. The viscosity of the epoxy increased with increase in star-like polymer content. Tensile tests showed no noteworthy influence of star-like polymer on tensile properties. The addition of 0.5 wt.% star-like polymer increased the glass transition temperature by 8.2 °C. Mode-I interlaminar fracture toughness and low-velocity impact tests were performed on star-like polymer-modified BFRP laminates, where interfacial adhesion and impact energy capabilities were observed. Interlaminar fracture toughness improved by 45% and energy absorption capability increased threefold for BFRP laminates modified with 1 wt.% of star-like polymer when compared to unmodified BFRP laminates. This improvement could be attributed to the increase in ductility of the matrix on the addition of the star-like polymer, increasing resistance to impact and damage. Furthermore, scanning electron microscopy confirmed that with increase in star-like polymer content, the interfacial adhesion between the matrix and fibres improves.
- Keywords
- basalt fibre, bio-based matrix, mechanical properties, star-like polymer,
- Publication type
- Journal Article MeSH
In this study, the influence of the technological parameters of autoclave curing on the resulting mechanical properties of laminates was investigated. The main criterion for optimizing the curing was to extend the processing window with a lower prepreg viscosity. At the same time, the issue of setting the pressure level before the heat ramp to the final cure temperature was also addressed. An experimental method of measuring the indentation viscosity of the prepreg was used to determine the viscosity profile. Despite the experimental nature of the method, the reliability of this method for rapid approximate identification of the processing window of the prepreg was verified by the results of the study. Several laminates with the same ply orientation were produced using the selected cure cycles, from which test specimens were cut with a water jet and inspected by confocal microscopy. The mechanical properties of tension and flexure were measured within the individual curing cycles using tests according to ISO standards. The data reported demonstrate that the experimental method of optimizing the curing parameters has successfully increased the selected mechanical properties. The resulting mechanical properties of the laminates were enhanced by up to 20% compared to the non-optimized cure cycle. The influence of the type of cure cycle on the resulting thickness of the cured laminate was evaluated in this study.
- Keywords
- autoclave, carbon–epoxy prepreg, composite curing, cure cycle, mechanical properties,
- Publication type
- Journal Article MeSH
As a high-demand material, polymer matrix composites are being used in many advanced industrial applications. Due to ecological issues in the past decade, some attention has been paid to the use of natural fibers. However, using only natural fibers is not desirable for advanced applications. Therefore, hybridization of natural and synthetic fibers appears to be a good solution for the next generation of polymeric composite structures. Composite structures are normally made for various harsh operational conditions, and studies on loading rate and strain-dependency are essential in the design stage of the structures. This review aimed to highlight the different materials' content of hybrid composites in the literature, while addressing the different methods of material characterization for various ranges of strain rates. In addition, this work covers the testing methods, possible failure, and damage mechanisms of hybrid and synthetic FRP composites. Some studies about different numerical models and analytical methods that are applicable for composite structures under different strain rates are described.
- Keywords
- failure mode and deformation, hybrid composite structure, impact loading, strain rate, synthetic composite,
- Publication type
- Journal Article MeSH
- Review MeSH