Most cited article - PubMed ID 32951297
Age-related differences in the translational landscape of mammalian oocytes
Transcriptional activity and gene expression are critical for the development of mature, meiotically competent oocytes. Our study demonstrates that the absence of cyclin-dependent kinase 12 (CDK12) in oocytes leads to complete female sterility, as fully developed oocytes capable of completing meiosis I are absent from the ovaries. Mechanistically, CDK12 regulates RNA polymerase II activity in growing oocytes and ensures the maintenance of the physiological maternal transcriptome, which is essential for protein synthesis that drives further oocyte growth. Notably, CDK12-deficient growing oocytes exhibit a 71% reduction in transcriptional activity. Furthermore, impaired oocyte development disrupts folliculogenesis, leading to premature ovarian failure without terminal follicle maturation or ovulation. In conclusion, our findings identify CDK12 as a key master regulator of the oocyte transcriptional program and gene expression, indispensable for oocyte growth and female fertility. A schematic illustrating the effects of loss of CDK12 in mammalian oocytes on the regulation of transcription by polymerase II and the concomitant effects on translation. This disruption leads to an aberrant transcriptome and translatome, resulting in the absence of fully mature oocytes and ultimately female sterility.
- MeSH
- Cyclin-Dependent Kinases * metabolism deficiency genetics MeSH
- Humans MeSH
- Meiosis genetics MeSH
- Mice MeSH
- Oocytes * metabolism enzymology pathology MeSH
- Oogenesis MeSH
- Ovarian Follicle metabolism MeSH
- Primary Ovarian Insufficiency genetics pathology MeSH
- RNA Polymerase II metabolism MeSH
- Transcriptome MeSH
- Infertility, Female * genetics pathology enzymology metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Cyclin-Dependent Kinases * MeSH
- RNA Polymerase II MeSH
Cells are equipped with a diverse network of signaling and regulatory proteins that function as cell cycle regulators and checkpoint proteins to ensure the proper progression of cell division. A key regulator of cell division is polo-like kinase 1 (PLK1), a member of the serine/threonine kinase family that plays an important role in regulating the mitotic and meiotic cell cycle. The phosphorylation of specific substrates mediated by PLK1 controls nuclear envelope breakdown (NEBD), centrosome maturation, proper spindle assembly, chromosome segregation, and cytokinesis. In mammalian oogenesis, PLK1 is essential for resuming meiosis before ovulation and for establishing the meiotic spindle. Among other potential roles, PLK1 regulates the localized translation of spindle-enriched mRNAs by phosphorylating and thereby inhibiting the translational repressor 4E-BP1, a downstream target of the mTOR (mammalian target of rapamycin) pathway. In this review, we summarize the functions of PLK1 in mitosis, meiosis, and cytokinesis and focus on the role of PLK1 in regulating mRNA translation. However, knowledge of the role of PLK1 in the regulation of meiosis remains limited.
- Keywords
- PLK1, mRNA translation, meiosis, mitosis, oocytes, polo-like kinase 1, spindle,
- MeSH
- Humans MeSH
- Meiosis MeSH
- Mitosis MeSH
- Polo-Like Kinase 1 MeSH
- Protein Serine-Threonine Kinases * metabolism MeSH
- Cell Cycle Proteins * metabolism MeSH
- Proto-Oncogene Proteins metabolism MeSH
- Check Tag
- Humans MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Protein Serine-Threonine Kinases * MeSH
- Cell Cycle Proteins * MeSH
- Proto-Oncogene Proteins MeSH
In mammalian females, oocytes are stored in the ovary and meiosis is arrested at the diplotene stage of prophase I. When females reach puberty oocytes are selectively recruited in cycles to grow, overcome the meiotic arrest, complete the first meiotic division and become mature (ready for fertilization). At a molecular level, the master regulator of prophase I arrest and meiotic resumption is the maturation-promoting factor (MPF) complex, formed by the active form of cyclin dependent kinase 1 (CDK1) and Cyclin B1. However, we still do not have complete information regarding the factors implicated in MPF activation. In this study we document that out of three mammalian serum-glucocorticoid kinase proteins (SGK1, SGK2, SGK3), mouse oocytes express only SGK1 with a phosphorylated (active) form dominantly localized in the nucleoplasm. Further, suppression of SGK1 activity in oocytes results in decreased CDK1 activation via the phosphatase cell division cycle 25B (CDC25B), consequently delaying or inhibiting nuclear envelope breakdown. Expression of exogenous constitutively active CDK1 can rescue the phenotype induced by SGK1 inhibition. These findings bring new insights into the molecular pathways acting upstream of MPF and a better understanding of meiotic resumption control by presenting a new key player SGK1 in mammalian oocytes.
- Keywords
- CDK1, MPF, Meiosis, Nuclear envelope breakdown, Oocyte, SGK1,
- MeSH
- Maturation-Promoting Factor * metabolism MeSH
- Cell Cycle Checkpoints MeSH
- Meiosis MeSH
- Mice MeSH
- Oocytes metabolism MeSH
- Meiotic Prophase I MeSH
- Protein Serine-Threonine Kinases genetics MeSH
- Immediate-Early Proteins * genetics metabolism MeSH
- Mammals metabolism MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Maturation-Promoting Factor * MeSH
- Protein Serine-Threonine Kinases MeSH
- Immediate-Early Proteins * MeSH
- serum-glucocorticoid regulated kinase MeSH Browser
Regulation of translation is essential for the diverse biological processes involved in development. Particularly, mammalian oocyte development requires the precisely controlled translation of maternal transcripts to coordinate meiotic and early embryo progression while transcription is silent. It has been recently reported that key components of mRNA translation control are short and long noncoding RNAs (ncRNAs). We found that the ncRNABrain cytoplasmic 1 (BC1) has a role in the fully grown germinal vesicle (GV) mouse oocyte, where is highly expressed in the cytoplasm associated with polysomes. Overexpression of BC1 in GV oocyte leads to a minute decrease in global translation with a significant reduction of specific mRNA translation via interaction with the Fragile X Mental Retardation Protein (FMRP). BC1 performs a repressive role in translation only in the GV stage oocyte without forming FMRP or Poly(A) granules. In conclusion, BC1 acts as the translational repressor of specific mRNAs in the GV stage via its binding to a subset of mRNAs and physical interaction with FMRP. The results reported herein contribute to the understanding of the molecular mechanisms of developmental events connected with maternal mRNA translation.
- Keywords
- Non-coding RNA, development, embryo, oocyte, translation,
- MeSH
- Cytoplasm genetics metabolism MeSH
- Mice, Inbred ICR MeSH
- Mice MeSH
- RNA, Untranslated genetics MeSH
- Oocytes cytology physiology MeSH
- Oogenesis * MeSH
- Polyribosomes genetics metabolism MeSH
- Protein Biosynthesis * MeSH
- RNA, Small Cytoplasmic genetics MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- RNA, Untranslated MeSH
- RNA, Small Cytoplasmic MeSH