Nejvíce citovaný článek - PubMed ID 33143091
The Anti-Senescence Activity of Cytokinin Arabinosides in Wheat and Arabidopsis Is Negatively Correlated with Ethylene Production
In the context of global climate change and the increasing need to study plant response to drought, there is a demand for easily, rapidly, and remotely measurable parameters that sensitively reflect leaf water status. Parameters with this potential include those derived from leaf spectral reflectance (R) and chlorophyll fluorescence. As each of these methods probes completely different leaf characteristics, their sensitivity to water loss may differ in different plant species and/or under different circumstances, making it difficult to choose the most appropriate method for estimating water status in a given situation. Here, we present a simple comparative analysis to facilitate this choice for leaf-level measurements. Using desiccation of tobacco (Nicotiana tabacum L. cv. Samsun) and barley (Hordeum vulgare L. cv. Bojos) leaves as a model case, we measured parameters of spectral R and chlorophyll fluorescence and then evaluated and compared their applicability by means of introduced coefficients (coefficient of reliability, sensitivity, and inaccuracy). This comparison showed that, in our case, chlorophyll fluorescence was more reliable and universal than spectral R. Nevertheless, it is most appropriate to use both methods simultaneously, as the specific ranking of their parameters according to the coefficient of reliability may indicate a specific scenario of changes in desiccating leaves.
- Publikační typ
- časopisecké články MeSH
Increasing crop productivity under optimal conditions and mitigating yield losses under stressful conditions is a major challenge in contemporary agriculture. We have recently identified an effective anti-senescence compound (MTU, [1-(2-methoxyethyl)-3-(1,2,3-thiadiazol-5yl)urea]) in in vitro studies. Here, we show that MTU delayed both age- and stress-induced senescence of wheat plants (Triticum aestivum L.) by enhancing the abundance of PSI supercomplex with LHCa antennae (PSI-LHCa) and promoting the cyclic electron flow (CEF) around PSI. We suppose that this rarely-observed phenomenon blocks the disintegration of photosynthetic apparatus and maintains its activity as was reflected by the faster growth rate of wheat in optimal conditions and under drought and heat stress. Our multiyear field trial analysis further shows that the treatment with 0.4 g ha-1 of MTU enhanced average grain yields of field-grown wheat and barley (Hordeum vulgare L.) by 5-8%. Interestingly, the analysis of gene expression and hormone profiling confirms that MTU acts without the involvement of cytokinins or other phytohormones. Moreover, MTU appears to be the only chemical reported to date to affect PSI stability and activity. Our results indicate a central role of PSI and CEF in the onset of senescence with implications in yield management at least for cereal species.
- Klíčová slova
- 1-(2-methoxyethyl)-3-(1,2,3-thiadiazol-5yl)urea, MTU, cyclic electron flow, drought stress, heat stress, photosystem I, stress tolerance, wheat,
- Publikační typ
- časopisecké články MeSH
To cope with biotic and abiotic stress conditions, land plants have evolved several levels of protection, including delicate defense mechanisms to respond to changes in the environment. The benefits of inducible defense responses can be further augmented by defense priming, which allows plants to respond to a mild stimulus faster and more robustly than plants in the naïve (non-primed) state. Priming provides a low-cost protection of agriculturally important plants in a relatively safe and effective manner. Many different organic and inorganic compounds have been successfully tested to induce resistance in plants. Among the plethora of commonly used physicochemical techniques, priming by plant growth regulators (phytohormones and their derivatives) appears to be a viable approach with a wide range of applications. While several classes of plant hormones have been exploited in agriculture with promising results, much less attention has been paid to cytokinin, a major plant hormone involved in many biological processes including the regulation of photosynthesis. Cytokinins have been long known to be involved in the regulation of chlorophyll metabolism, among other functions, and are responsible for delaying the onset of senescence. A comprehensive overview of the possible mechanisms of the cytokinin-primed defense or stress-related responses, especially those related to photosynthesis, should provide better insight into some of the less understood aspects of this important group of plant growth regulators.
- Klíčová slova
- ROS, chlorophyll fluorescence, cytokinin, photosynthesis, priming, stomata, stress,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH