Nejvíce citovaný článek - PubMed ID 33510751
Evolution of Tandem Repeats Is Mirroring Post-polyploid Cladogenesis in Heliophila (Brassicaceae)
BACKGROUND AND AIMS: The Greater Cape Floristic Region is one of the world's biodiversity hotspots and is considered poor in polyploids. To test this assumption, ploidy variation was investigated in a widespread Cape shrub, Dicerothamnus rhinocerotis (renosterbos, Asteraceae). The aim was to elucidate the cytotype distribution and population composition across the species range, and to assess differences in morphology, environmental niches and genetics. METHODS: Ploidy level and genome size were determined via flow cytometry and cytotype assignment was confirmed by chromosome counting. Restriction site-associated DNA sequencing (RADseq) analyses were used to infer genetic relationships. Cytotype climatic and environmental niches were compared using a range of environmental layers and a soil model, while morphological differences were examined using multivariate methods. KEY RESULTS: The survey of 171 populations and 2370 individuals showed that the species comprises diploid and tetraploid cytotypes, no intermediates and only 16.8 % of mixed populations. Mean 2C values were 1.80-2.06 pg for diploids and 3.48-3.80 pg for tetraploids, with very similar monoploid genome sizes. Intra-cytotype variation showed a significant positive correlation with altitude and longitude in both cytotypes and with latitude in diploids. Although niches of both cytotypes were highly equivalent and similar, their optima and breadth were shifted due to differences mainly in isothermality and available water capacity. Morphometric analyses showed significant differences in the leaves and corolla traits, the number of florets per capitulum, and cypsela dimensions between the two cytotypes. Genetic analyses revealed four groups, three of them including both cytotypes. CONCLUSIONS: Dicerothamnus rhinocerotis includes two distinct cytotypes that are genetically similar. While tetraploids arise several times independently within different genetic groups, morphological and ecological differences are evident between cytotypes. Our results open up new avenues for questions regarding the importance of ploidy in the megadiverse Cape flora, and exemplify the need for population-based studies focused on ploidy variation.
- Klíčová slova
- Elytropappus rhinocerotis, Stoebe clade, Asteraceae, Compositae, Gnaphalieae, RADseq, South Africa, flow cytometry, ploidy level, renosterbos, renosterveld,
- MeSH
- Asteraceae * genetika MeSH
- délka genomu MeSH
- diploidie * MeSH
- ekosystém * MeSH
- genetická variace MeSH
- genom rostlinný MeSH
- tetraploidie * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Based on recent achievements in phylogenetic studies of the Brassicaceae, a novel infrafamilial classification is proposed that includes major improvements at the subfamilial and supertribal levels. Herein, the family is subdivided into two subfamilies, Aethionemoideae (subfam. nov.) and Brassicoideae. The Brassicoideae, with 57 of the 58 tribes of Brassicaceae, are further partitioned into five supertribes, including the previously recognized Brassicodae and the newly established Arabodae, Camelinodae, Heliophilodae, and Hesperodae. Additional tribus-level contributions include descriptions of the newly recognized Arabidopsideae, Asperuginoideae, Hemilophieae, Schrenkielleae, and resurrection of the Chamireae and Subularieae. Further detailed comments on 17 tribes in need of clarifications are provided.
- Klíčová slova
- classification, subfamily, supertribe, taxonomy, tribe,
- Publikační typ
- časopisecké články MeSH
Plant genomes consist, to a considerable extent, of non-coding repetitive DNA. Several studies showed that phylogenetic signals can be extracted from such repeatome data by using among-species dissimilarities from the RepeatExplorer2 pipeline as distance measures. Here, we advanced this approach by adjusting the read input for comparative clustering indirectly proportional to genome size and by summarizing all clusters into a main distance matrix subjected to Neighbor Joining algorithms and Principal Coordinate Analyses. Thus, our multivariate statistical method works as a "repeatomic fingerprint," and we proved its power and limitations by exemplarily applying it to the family Rosaceae at intrafamilial and, in the genera Fragaria and Rosa, at the intrageneric level. Since both taxa are prone to hybridization events, we wanted to show whether repeatome data are suitable to unravel the origin of natural and synthetic hybrids. In addition, we compared the results based on complete repeatomes with those from ribosomal DNA clusters only, because they represent one of the most widely used barcoding markers. Our results demonstrated that repeatome data contained a clear phylogenetic signal supporting the current subfamilial classification within Rosaceae. Accordingly, the well-accepted major evolutionary lineages within Fragaria were distinguished, and hybrids showed intermediate positions between parental species in data sets retrieved from both complete repeatomes and rDNA clusters. Within the taxonomically more complicated and particularly frequently hybridizing genus Rosa, we detected rather weak phylogenetic signals but surprisingly found a geographic pattern at a population scale. In sum, our method revealed promising results at larger taxonomic scales as well as within taxa with manageable levels of reticulation, but success remained rather taxon specific. Since repeatomes can be technically easy and comparably inexpensively retrieved even from samples of rather poor DNA quality, our phylogenomic method serves as a valuable alternative when high-quality genomes are unavailable, for example, in the case of old museum specimens.
- Klíčová slova
- Caninae, Fragaria, Rosaceae, graph-based clustering, high-throughput sequencing, phylogenetics, repeatome, repetitive DNA,
- Publikační typ
- časopisecké články MeSH