Nejvíce citovaný článek - PubMed ID 33545276
Multigene phylogenetics of euglenids based on single-cell transcriptomics of diverse phagotrophs
Diplonemids are highly diverse and abundant marine plankton with significant ecological importance. However, little is known about their biology, even in the model diplonemid Paradiplonema papillatum whose genome sequence is available. Examining the subcellular localization of proteins using fluorescence microscopy is a powerful approach to infer their putative function. Here, we report a plasmid-based method that enables YFP-tagging of a gene at the endogenous locus. By examining the localization of proteins whose homologs are involved in chromosome organization or segregation in other eukaryotes, we discovered several notable features in mitotically dividing P. papillatum cells. Cohesin is enriched on condensed interphase chromatin. During mitosis, chromosomes organize into two rings (termed mitotic rings herein) that surround the elongating nucleolus and align on a bipolar spindle. Homologs of chromosomal passenger complex components (INCENP, two Aurora kinases and KIN-A), a CLK1 kinase, meiotic chromosome axis protein SYCP2L1, spindle checkpoint protein Mad1 and microtubule regulator XMAP215 localize in between the two mitotic rings. In contrast, a Mad2 homolog localizes near basal bodies as in trypanosomes. By representing the first molecular characterization of mitotic mechanisms in P. papillatum and raising many questions, this study forms the foundation for dissecting mitotic mechanisms in diplonemids.
- Klíčová slova
- Euglenozoa, chromosome, diplonemid, kinetochore, kinetoplastid,
- MeSH
- aparát dělícího vřeténka metabolismus MeSH
- chromozomální proteiny, nehistonové metabolismus MeSH
- chromozomy metabolismus MeSH
- Dinoflagellata * genetika metabolismus cytologie MeSH
- mitóza * MeSH
- proteiny buněčného cyklu metabolismus MeSH
- segregace chromozomů MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chromozomální proteiny, nehistonové MeSH
- proteiny buněčného cyklu MeSH
UNLABELLED: Transmission of genetic material from one generation to the next is a fundamental feature of all living cells. In eukaryotes, a macromolecular complex called the kinetochore plays crucial roles during chromosome segregation by linking chromosomes to spindle microtubules. Little is known about this process in evolutionarily diverse protists. Within the supergroup Discoba, Euglenozoa forms a speciose group of unicellular flagellates-kinetoplastids, euglenids, and diplonemids. Kinetoplastids have an unconventional kinetochore system, while euglenids have subunits that are conserved among most eukaryotes. For diplonemids, a group of extremely diverse and abundant marine flagellates, it remains unclear what kind of kinetochores are present. Here, we employed deep homology detection protocols using profile-versus-profile Hidden Markov Model searches and AlphaFold-based structural comparisons to detect homologies that might have been previously missed. Interestingly, we still could not detect orthologs for most of the kinetoplastid or canonical kinetochore subunits with few exceptions including a putative centromere-specific histone H3 variant (cenH3/CENP-A), the spindle checkpoint protein Mad2, the chromosomal passenger complex members Aurora and INCENP, and broadly conserved proteins like CLK kinase and the meiotic synaptonemal complex proteins SYCP2/3 that also function at kinetoplastid kinetochores. We examined the localization of five candidate kinetochore-associated proteins in the model diplonemid, Paradiplonema papillatum. PpCENP-A shows discrete dots in the nucleus, implying that it is likely a kinetochore component. PpMad2, PpCLKKKT10/19, PpSYCP2L1KKT17/18, and PpINCENP reside in the nucleus, but no clear kinetochore localization was observed. Altogether, these results point to the possibility that diplonemids evolved a hitherto unknown type of kinetochore system. IMPORTANCE: A macromolecular assembly called the kinetochore is essential for the segregation of genetic material during eukaryotic cell division. Therefore, characterization of kinetochores across species is essential for understanding the mechanisms involved in this key process across the eukaryotic tree of life. In particular, little is known about kinetochores in divergent protists such as Euglenozoa, a group of unicellular flagellates that includes kinetoplastids, euglenids, and diplonemids, the latter being a highly diverse and abundant component of marine plankton. While kinetoplastids have an unconventional kinetochore system and euglenids have a canonical one similar to traditional model eukaryotes, preliminary searches detected neither unconventional nor canonical kinetochore components in diplonemids. Here, we employed state-of-the-art deep homology detection protocols but still could not detect orthologs for the bulk of kinetoplastid-specific nor canonical kinetochore proteins in diplonemids except for a putative centromere-specific histone H3 variant. Our results suggest that diplonemids evolved kinetochores that do not resemble previously known ones.
- Klíčová slova
- Diplonemea, Kinetoplastea, Paradiplonema, cell division, cenH3/CENP-A, kinetochore,
- MeSH
- Euglenozoa * genetika metabolismus MeSH
- fylogeneze MeSH
- kinetochory * metabolismus MeSH
- protozoální proteiny metabolismus genetika MeSH
- segregace chromozomů MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- protozoální proteiny MeSH
Euglenoids (Euglenida) are unicellular flagellates possessing exceptionally wide geographical and ecological distribution. Euglenoids combine a biotechnological potential with a unique position in the eukaryotic tree of life. In large part these microbes owe this success to diverse genetics including secondary endosymbiosis and likely additional sources of genes. Multiple euglenoid species have translational applications and show great promise in production of biofuels, nutraceuticals, bioremediation, cancer treatments and more exotically as robotics design simulators. An absence of reference genomes currently limits these applications, including development of efficient tools for identification of critical factors in regulation, growth or optimization of metabolic pathways. The Euglena International Network (EIN) seeks to provide a forum to overcome these challenges. EIN has agreed specific goals, mobilized scientists, established a clear roadmap (Grand Challenges), connected academic and industry stakeholders and is currently formulating policy and partnership principles to propel these efforts in a coordinated and efficient manner.
- Klíčová slova
- Biofuels, Bioremediation, Biotechnology, Euglena, Food supplements, Networks,
- MeSH
- biotechnologie MeSH
- Euglena * fyziologie MeSH
- symbióza MeSH
- Publikační typ
- časopisecké články MeSH
Euglenids represent a group of protists with diverse modes of feeding. To date, only a partial genomic sequence of Euglena gracilis and transcriptomes of several phototrophic and secondarily osmotrophic species are available, while primarily heterotrophic euglenids are seriously undersampled. In this work, we begin to fill this gap by presenting genomic and transcriptomic drafts of a primary osmotroph, Rhabdomonas costata. The current genomic assembly length of 100 Mbp is 14× smaller than that of E. gracilis. Despite being too fragmented for comprehensive gene prediction it provided fragments of the mitochondrial genome and comparison of the transcriptomic and genomic data revealed features of its introns, including several candidates for nonconventional types. A set of 39,456 putative R. costata proteins was predicted from the transcriptome. Annotation of the mitochondrial core metabolism provides the first data on the facultatively anaerobic mitochondrion of R. costata, which in most respects resembles the mitochondrion of E. gracilis with a certain level of streamlining. R. costata can synthetise thiamine by enzymes of heterogenous provenances and haem by a mitochondrial-cytoplasmic C4 pathway with enzymes orthologous to those found in E. gracilis. The low percentage of green algae-affiliated genes supports the ancestrally osmotrophic status of this species.
- MeSH
- biologická evoluce MeSH
- Chromatium genetika metabolismus MeSH
- Euglenida genetika metabolismus MeSH
- exony genetika MeSH
- fylogeneze MeSH
- genom MeSH
- heterotrofní procesy MeSH
- introny genetika MeSH
- mitochondrie genetika MeSH
- sekvenční analýza DNA metody MeSH
- transkriptom genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: The supergroup Euglenozoa unites heterotrophic flagellates from three major clades, kinetoplastids, diplonemids, and euglenids, each of which exhibits extremely divergent mitochondrial characteristics. Mitochondrial genomes (mtDNAs) of euglenids comprise multiple linear chromosomes carrying single genes, whereas mitochondrial chromosomes are circular non-catenated in diplonemids, but circular and catenated in kinetoplastids. In diplonemids and kinetoplastids, mitochondrial mRNAs require extensive and diverse editing and/or trans-splicing to produce mature transcripts. All known euglenozoan mtDNAs exhibit extremely short mitochondrial small (rns) and large (rnl) subunit rRNA genes, and absence of tRNA genes. How these features evolved from an ancestral bacteria-like circular mitochondrial genome remains unanswered. RESULTS: We sequenced and assembled 20 euglenozoan single-cell amplified genomes (SAGs). In our phylogenetic and phylogenomic analyses, three SAGs were placed within kinetoplastids, 14 within diplonemids, one (EU2) within euglenids, and two SAGs with nearly identical small subunit rRNA gene (18S) sequences (EU17/18) branched as either a basal lineage of euglenids, or as a sister to all euglenozoans. Near-complete mitochondrial genomes were identified in EU2 and EU17/18. Surprisingly, both EU2 and EU17/18 mitochondrial contigs contained multiple genes and one tRNA gene. Furthermore, EU17/18 mtDNA possessed several features unique among euglenozoans including full-length rns and rnl genes, six mitoribosomal genes, and nad11, all likely on a single chromosome. CONCLUSIONS: Our data strongly suggest that EU17/18 is an early-branching euglenozoan with numerous ancestral mitochondrial features. Collectively these data contribute to untangling the early evolution of euglenozoan mitochondria.
- Klíčová slova
- Evolution, Mitochondrial ribosome, Phylogeny, Single-cell amplified genome,
- MeSH
- Euglenida * genetika MeSH
- Euglenozoa genetika MeSH
- europium MeSH
- fylogeneze MeSH
- genom mitochondriální * genetika MeSH
- genomika MeSH
- mitochondriální DNA MeSH
- RNA transferová MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- europium MeSH
- mitochondriální DNA MeSH
- RNA transferová MeSH
Euglenozoa is a species-rich group of protists, which have extremely diverse lifestyles and a range of features that distinguish them from other eukaryotes. They are composed of free-living and parasitic kinetoplastids, mostly free-living diplonemids, heterotrophic and photosynthetic euglenids, as well as deep-sea symbiontids. Although they form a well-supported monophyletic group, these morphologically rather distinct groups are almost never treated together in a comparative manner, as attempted here. We present an updated taxonomy, complemented by photos of representative species, with notes on diversity, distribution and biology of euglenozoans. For kinetoplastids, we propose a significantly modified taxonomy that reflects the latest findings. Finally, we summarize what is known about viruses infecting euglenozoans, as well as their relationships with ecto- and endosymbiotic bacteria.
- Klíčová slova
- Diplonemida, Euglenida, Kinetoplastida, microbial eukaryotes, phylogeny, systematics,
- MeSH
- ekosystém MeSH
- Euglenozoa klasifikace genetika fyziologie virologie MeSH
- fylogeneze MeSH
- Mimiviridae patogenita MeSH
- symbióza MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH