Most cited article - PubMed ID 33924537
The Effect of the Controlled Release of Platelet Lysate from PVA Nanomats on Keratinocytes, Endothelial Cells and Fibroblasts
Scaffolds made of degradable polymers, such as collagen, polyesters or polysaccharides, are promising matrices for fabrication of bioartificial vascular grafts or patches. In this study, collagen isolated from porcine skin was processed into a gel, reinforced with collagen particles and with incorporated adipose tissue-derived stem cells (ASCs). The cell-material constructs were then incubated in a DMEM medium with 2% of FS (DMEM_part), with added polyvinylalcohol nanofibers (PVA_part sample), and for ASCs differentiation towards smooth muscle cells (SMCs), the medium was supplemented either with human platelet lysate released from PVA nanofibers (PVA_PL_part) or with TGF-β1 + BMP-4 (TGF + BMP_part). The constructs were further endothelialised with human umbilical vein endothelial cells (ECs). The immunofluorescence staining of alpha-actin and calponin, and von Willebrand factor, was performed. The proteins involved in cell differentiation, the extracellular matrix (ECM) proteins, and ECM remodelling proteins were evaluated by mass spectrometry on day 12 of culture. Mechanical properties of the gels with ASCs were measured via an unconfined compression test on day 5. Gels evinced limited planar shrinkage, but it was higher in endothelialised TGF + BMP_part gel. Both PVA_PL_part samples and TGF + BMP_part samples supported ASC growth and differentiation towards SMCs, but only PVA_PL_part supported homogeneous endothelialisation. Young modulus of elasticity increased in all samples compared to day 0, and PVA_PL_part gel evinced a slightly higher ratio of elastic energy. The results suggest that PVA_PL_part collagen construct has the highest potential to remodel into a functional vascular wall.
- Keywords
- adipose tissue-derived stem cells, collagen particles, endothelial cells, extracellular matrix, gel reinforcement, remodelling, stem cells differentiation, tissue engineering, vascular patches,
- MeSH
- Cell Differentiation MeSH
- Human Umbilical Vein Endothelial Cells MeSH
- Extracellular Matrix Proteins metabolism MeSH
- Gels metabolism MeSH
- Stem Cells metabolism MeSH
- Collagen * metabolism MeSH
- Cells, Cultured MeSH
- Humans MeSH
- Myocytes, Smooth Muscle metabolism MeSH
- Swine MeSH
- Tissue Engineering methods MeSH
- Adipose Tissue * MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Extracellular Matrix Proteins MeSH
- Gels MeSH
- Collagen * MeSH
Electrospun hybrid nanofibers, based on functional agents immobilized in polymeric matrix, possess a unique combination of collective properties. These are beneficial for a wide range of applications, which include theranostics, filtration, catalysis, and tissue engineering, among others. The combination of functional agents in a nanofiber matrix offer accessibility to multifunctional nanocompartments with significantly improved mechanical, electrical, and chemical properties, along with better biocompatibility and biodegradability. This review summarizes recent work performed for the fabrication, characterization, and optimization of different hybrid nanofibers containing varieties of functional agents, such as laser ablated inorganic nanoparticles (NPs), which include, for instance, gold nanoparticles (Au NPs) and titanium nitride nanoparticles (TiNPs), perovskites, drugs, growth factors, and smart, inorganic polymers. Biocompatible and biodegradable polymers such as chitosan, cellulose, and polycaprolactone are very promising macromolecules as a nanofiber matrix for immobilizing such functional agents. The assimilation of such polymeric matrices with functional agents that possess wide varieties of characteristics require a modified approach towards electrospinning techniques such as coelectrospinning and template spinning. Additional focus within this review is devoted to the state of the art for the implementations of these approaches as viable options for the achievement of multifunctional hybrid nanofibers. Finally, recent advances and challenges, in particular, mass fabrication and prospects of hybrid nanofibers for tissue engineering and biomedical applications have been summarized.
- Keywords
- bone regeneration, drug delivery, electrospinning, functional agents, hybrid nanofibers, nanomedicine, nanoparticles, tissue engineering,
- Publication type
- Journal Article MeSH
- Review MeSH